Study on reservoirs of cutaneous leishmaniasis using molecular methods of PCR-RFLP in endemic foci of disease, north east of Iran

Sayena Rafizadeh, Mehrzad Saraei, Mohammad Reza Abai, Mohammad Ali Oshaghi, Mehdi Mohebali, Amir Peymani, Taghi Naserpour Farivar, Hassan Bakhshi, Alireza Akrami, Yavar Rassi

Abstract
Zoonotic cutaneous leishmaniasis (ZCL) due to *Leishmania major* is a great public health problem in the Old World. Rodents are important reservoir of causative agent of disease is widely distributed in arid and savannah regions. Esfaryen district is one of the most important endemic foci of zoonotic cutaneous leishmaniasis (ZCL) in Northeast of Iran. To identify the reservoir(s) of *Leishmania* in this focus, a total of 44 rodents were collected using Sherman traps during September to December 2013. They were identified as *Rhombomys opimus* Lichtenstein (72.7%) and *Meriones libycus* Lichtenstein (27.3%). Microscopic investigation on blood smear of the animals for amastigote parasites revealed 32 (72.7%) rodents of *R. opimus* infected with amastigote. *L. major* infection in these animals was then confirmed by polymerase chain reaction against internal transcribed spacer ribosomal DNA (rDNA) loci of the parasite followed by restriction fragment length polymorphism. Further, sequence analysis of 297 bp of ITS1-rDNA loci revealed the presence of *L. major* in *R. opimus*. This is the first molecular report of *L. major* infection within *R. opimus* in this region. Our study showed that *R. opimus* is the most important host reservoir for maintenance of the parasite source in the area.

Keywords: Cutaneous leishmaniasis, *Leishmania major*, Reservoir, Iran.

1. Introduction
Zoonotic cutaneous leishmaniasis (ZCL) is an important public health problem in many regions of low incoming countries in the Old World. The causative agent of disease, *Leishmania major* is widely distributed in various rodent populations in arid and savannah regions [1]. Rodents of the sub family Gerbillidae are the main reservoir hosts of causative agent of disease in Iran and other countries where ZCL is endemic [2-5]. In natural ecosystems of Old World deserts, the rodents of gerbils are the most abundant mammals [2]. There are several species of rodents that play as reservoir hosts of *leishmania* due to *L. major*: Great gerbil of *Rhombomys opimus* in Central Asia, Northern Afghanistan and Iran; Libyan jird of *Meriones libycus* in the Arabian Peninsula, Central Asia and Iran; Indian jird of *Meriones hurrianae* in India and Iran; *Psammomys obesus* (fat sand rat) and *Meriones crassus* in Northern Africa and Middle East; *Rattus rattus* and *Arvicanthus niloticus* in Sudan [6] and *Tatera* spp. in sub-Saharan Africa and Iran [1].

The rodent species of *R. opimus* (Cricetidae: Gerbillinae) has been reported as the main and proven reservoir host of *L. major* in west and south Kazakhstan, Central Asia with adjacent parts in Afghanistan and Iran, Mongolia, and in some provinces of China [2]. Based on animal reservoir hosts of ZCL, four foci of disease have been reported in Iran [4]. In central and northeast of Iran, the great gerbil of *Rhombomys opimus* Lichtenstein and *Phlebotomus papatasi* Scopoli play important roles as reservoir and vector of the disease [7-10]. The second foci is located in the west and southwest of Iran, where *Tatera indica* Hardwicke replaced *R. opimus* as a reservoir and *P. papatasi* as a vector [9]. Baluchistan province, in the southeast of Iran, is considered as the third foci of ZCL, and *Meriones hurrianae* Jordon has been approved as a natural reservoir host of disease [11].

The most rural areas of Fars province in southern Iran can be considered as the fourth foci of ZCL, where, *Meriones libycus* Lichtenstein is the primary and main reservoir host of the
disease, while *R. opimus* and *T. indica* were absent and *P. papatasi* is the proven vector of ZCL [4, 10]. Esfarayen district in north eastern Iran is an important focus of ZCL, and this study was performed to determine the main host reservoir of the disease using PCR-RFLP.

2. Material and Methods

2.1 Study area

This study was conducted in Esfarayen district, Khorasane shomali province, Northeast of Iran during September to December, 2013. The capital of the county is Esfarayen. At the 2006 census, the county’s population was 119,152, in 30, 307 families. In general, the northern part of the Esfarayen has a temperate climate due to its proximity to mountainous areas and the south and southwest areas with hot summers and cold winters. The average annual precipitation is nine mm. The main occupations of the population are farming and raising animal.

2.2 Rodents collection

Based on prevalence of disease with positive human cases, four villages of Kalateza, Esmaelabad, Kalatehshor and Hosseinabad were selected. Active colonies of rodents were identified, and rodents were captured using Sherman live traps in various parts of mentioned villages. Forty live traps were used each time and the traps were baited with roasted walnut, cucumber, and tomato, and placed in active burrows. The traps were set up early morning and evening during September to December, 2013. The genus and species of the rodents were determined by external characteristics: color, body measurements, ears, tail, feet, teeth, and cranium [12, 13]. Parasite infection in rodents was examined microscopically by preparing an impression smear from their ears after Giemsa staining. Positive smear samples were collected from infected rodents and were inoculated subcutaneously at the base of the tail of BALB/c. The procedure followed for species identification by polymerase chain reaction (PCR) method is described later.

2.3 DNA extraction

DNA of the all 44 rodent specimens was extracted using the Bioneer Genomic DNA Extraction Kit Cat. No.K-3032 Lot. No. 1204D, (North Korea), according to the manufacturer’s instructions. Extraction was carried out on the prepared smears slides of rodents. Double distilled water as a negative control and DNA from *L. major* and *L. tropica*, provided by Iranian Institute of Pasteur by the World Health Organization, were used as positive controls.

2.4 DNA amplification and PCR-RFLP

Primary examination for infection of rodents with *Leishmania* species was performed using nested- polymerase chain reaction (PCR) against the mini circle kinetoplast kDNA using the following primers [14] CSB2XF (forward): 5’-CGA/GTA/GCAGAACC/TCCCGTTC-3’ (20bp);CSB1XR(reverse):5’- ATTTTTCG/CGA/TTT/GCGAGACG-3’ (20 bp); 13Z (forward): 5’-ACTGGGGTGGTGTAGAATAG-3’ (22 bp); LIR (reverse): 5’-TGCGAGAACGCCCCT-3’ (15 bp). Positive samples against kDNA were tested against the ribosomal internal transcribed spacer 1 (ITS1) region using nested-PCR amplification assays where a ~560 bp PCR band was produced. This length of PCR in the system is assigned to *L. major* using kDNA nested PCR. We observed in the kDNA nested-PCR amplification assays where a ~560 bp PCR band was produced. This length of PCR in the system is assigned to *L. major* (Figure 1). Further analyses showed that they were positive against ITS1 locus and produced a band of ~340 bp in gel electrophoresis. Also, ITS1 PCR–RFLP analysis by HaeIII revealed the fragments of 220 and 140 bp for infected rodents which are characteristic of *L. major*. The diagnostic fragments are 200 and 60 bp for *L. tropica* and 200, 80 and 60 bp for *L. infantum/L. donovani* (Figures 2, 3). Some of the positive PCRs against ITS1 region detected in *R. opimus* were successfully sequenced and submitted to GenBank (accession nos. KJ577703, KJ577704, KJ577705, KJ577706, KJ577707 KJ577708). All prepared samples from *M. libycus* were negative for *Leishmania* infection. This is the first attempt on molecular detection of *Leishmania* infection among rodents as the reservoir host of disease in Esfarayen foci, north east of Iran.

3. Results

Altogether, 44 rodents were captured and identified. They were *Rhombomys opimus* (72.7%) and *Merciones libycus* (27.3%). All collected animals were examined for parasite infection under a light microscope, amastigotes were found in smears of all specimens 32 (72.7%) of *R. opimus*. Some samples from infected rodents were inoculated subcutaneously at the base of tail of one BALB/c. Inoculation of the parasite from infected rodents revealed the presence of amastigotes into the nodules and ulcer of the experimental mice after 25 days of the inoculation period. Parasite infections were observed in both male and female rodents of *R. opimus*. Isolated parasites from infected rodents were identified as *L. major* using kDNA nested PCR. We observed in the kDNA nested-PCR amplification assays where a ~560 bp PCR band was produced. This length of PCR in the system is assigned to *L. major* (Figures 2, 3). Further analyses showed that they were positive against ITS1 locus and produced a band of ~340 bp in gel electrophoresis. Also, ITS1 PCR–RFLP analysis by HaeIII revealed the fragments of 220 and 140 bp for infected rodents which are characteristic of *L. major*. The diagnostic fragments are 200 and 60 bp for *L. tropica* and 200, 80 and 60 bp for *L. infantum/L. donovani* (Figures 2, 3). Some of the positive PCRs against ITS1 region detected in *R. opimus* were successfully sequenced and submitted to GenBank (accession nos. KJ577703, KJ577704, KJ577705, KJ577706, KJ577707 KJ577708). All prepared samples from *M. libycus* were negative for *Leishmania* infection. This is the first attempt on molecular detection of *Leishmania* infection among rodents as the reservoir host of disease in Esfarayen foci, north east of Iran.

![Fig 1: kDNA nested PCR amplification (560 bp). L. major in R. opimus (Lanes E,F,G,H); Positive control of L. tropica (Lane C, 720 bp); Positive control of L. major (Lane D); Positive control of L. infantum (680 bp, A); Negative control (Lane D) and (M)100 bp molecular weight marker (Fermentase).](image-url)
were 99% similar to No.FN677357). Furthermore, We found that, our specimens are insufficient for diagnosing of leishmaniasis [19, 20]. Furthermore, mixed infections of (traditional techniques) are insufficient for diagnosing of the main reservoir host of causative agent of disease.

In endemic areas, the effective control of the human leishmaniasis requires a thorough knowledge of the ecology and epidemiology of the parasites causing the diseases, and their vertebrate and invertebrate hosts [18]. In many areas, however, despite considerable research on these diseases, the main ‘reservoir’ hosts and the species of sand fly responsible for most transmission have still to be identified. In many foci of ZCL there is at least one species of rodent that is sufficiently common and to be considered as a principal and main reservoir host of causative agent of disease.

Direct examination and culture of Leishmania parasites (traditional techniques) are insufficient for diagnosing of leishmaniasis [19, 20]. Furthermore, mixed infections of Leishmania parasites will be missed due to different growth rates of the different parasites in blood agar cultures [21]. Currently, the use of molecular methods in terms of sensitivity, speed and specificity are an interval to traditional methods.

In this study we isolated some L. major parasites from R. opimus where its sequences were 100% identical to that of isolates from several L. major sequences deposited in Genbank, including isolates from Iran (Accession Nos. EF413075, KJ194178, JN860713, AY573187), Sudan (Accession No. AJ300481), Uzbekistan (Accession No.FN677357). Furthermore, We found that, our specimens were 99% similar to L. major from Turkey (Accession No.KJ002553) as well as L. mexicana braziliensis from Mexico (Accession No.AF339752). This rodent has been also reported as the main reservoir in other foci of the disease in central of Iran [5, 7, 8]. This great gerbil, a colonial, burrowing rodent, is a common species in the arid desert and steppe regions of Central Asia. This species also exist in the southern territories of the former U.S.S.R. (i.e., Turkmenistan, Uzbekistan, Kazakhstan, and Tajikistan) and neighboring countries where ZCL is endemic and considered as an important public health problem, where R. opimus is considered the principal mammalian host of the parasite [22].

As a final conclusion, based on high density of R. opimus in the study areas, its natural infection with Leishmania major, Proximity of its colonies to human dwellings (< 200 m), this rodent is introduced as the main and principal reservoir host of disease in transmission to human by sand flies vectors. Although, all specimens of M. libycus were free of leishmania parasites, but considering the role of this rodent in other foci of ZCL in Iran, further investigation is needed.

5. Acknowledgement
The authors gratefully thank Esfarayen Health Center, Northern Khorasan province, Northeast of Iran for its field assistance. This study was financially supported by the School of Public Health, Tehran University of Medical Sciences (Project No. 24217) and Qazvin University of Medical Sciences.

6. References
cutaneous leishmaniasis in Marvdasht district, southern Islamic republic of Iran. East Med Hlth J 2007; 13(3):686-693.

