Two Species of Genus *Antrocephalus* Kirby (Chalcididae: Chalcidoidea: Hymenoptera): New Records for Province Khyber Pakhtunkhwa, Pakistan

Toheed Iqbal and Mian Inayatullah

Abstract

Two new records of genus *Antrocephalus* Kirby belonging to Family Chalcididae (Chalcidoidea: Hymenoptera) were identified from the collection of 200 specimens collected with insect collection sweep net and Malaise Trap from different ecological zones of Khyber Pakhtunkhwa, Pakistan for two consecutive years in 2012-13. These species were comprised of *A. mitys* and *A. nicus*. Diagnostic characters, host record and worldwide distribution of the species are also provided with the description of the species. Key to the species of genus *Antrocephalus* of Khyber Pakhtunkhwa, Pakistan is also provided along with illustrations of important characters.

Keywords: *Antrocephalus*, Khyber Pakhtunkhwa, New records, Pakistan, Parasitoids and Taxonomy.

1. Introduction

Chalcididae are medium to large sized insects varying in size from 1.5mm to 27mm in length. Distinctive characters are coarse setiferous punctures on head and thoracic dorsum, enlarged and swollen metatibia with denticulate or toothed ventral margins, larger metapleuron and arched metatibia (Gibson et al., 1997) [15]. Chalcididae are similar to Leucospidae in numerous physical features including body size, coarse setiferous punctures on head and thorax, arched metatibia and enlarged and toothed metatibia. However, Chalcididae differs from them by having flat forewing instead of folded lengthwise, poorly developed labiomaxillary complex, usually exposed labrum, tegulae more of less broad and oval, modified apex of scutellum and simple dorsellum (Bouček, 1974) [7]. Subfamily Podagrioninae of Family Torymidae is also similar to chalcids but they lack setiferous punctures and long ovipositor. Members of family Chalcididae are endoparasites of insects belonging to order Coleoptera, Diptera, Lepidoptera and Hymenoptera. All these orders have several pests of economic importance, therefore chalcidids are generally beneficial to humans as a group and many and many of its species have been used to control insect pests. They play significant role in the ecosystems of various economically important crops and thus, their importance cannot be underestimated (Cowan, 1979 [11], Ubaidillah, 1996 [53]. Linnaeus (1767) [32] was the first who studied chalcidids and reported species of *Spex sispes* (*Chalcis sispes*), *Vespa minuta* (*Brachymeria minuta*) etc. Linnaeus (1767) [32] was followed by Fabricius (1787) [12], Spinola (1811) [50], Westwood (1829) [60], Kirby (1883) [30]. Later on, Ashmead (1897, 1904) [3, 4], Cameron (1904) [10], Girault (1911) [16], Masi (1929) [36], Walker (1834) [54], Schmitz (1946) [47], Bouček (1952) [6], Nikol'skaya (1952) [41], Mani (1935) [34], Habu (1960, 1962) [22, 23] and Narendran (1989) [40] made significant contribution to the knowledge of Chalcididae. In Pakistan, Khokhar et al., [29] described *Brachymeria bicolorata* as pupal parasite of *Earias* spp. on cotton from Sindh province. *Brachymeria ocellata* was recorded as pupal parasite of fruit fly *Dacus ferrugineus* in Karachi by Samad et al., [1971] [45]. Additionally, Ahmed et al., (1987) [2], Rafi et al., (1987) [44], Ishrat & Malik (1987) [28] and Sheikh et al., (1987) [48] contributed to chalcidid fauna of Pakistan. According to Noyes (2014) [42], 29 species under seven genera are reported from Pakistan. Irshad (2003) [27] reported 14 species in four genera from Pakistan out of which 3 genera with six species are from Khyber Pakhtunkhwa. Iqbal et al., (2013) [26] reported 3 species of genus *Hockeria* from Khyber Pakhtunkhwa. He has also provided key for the identification of genera along with illustrations of important characters.

Keeping in view importance of taxonomic study of Chalcididae, current study was conducted...
in which we report 2 species of genus *Antrocephalus* Kirby new to Pakistan. Key to the species along with illustrations of the important characters is also given.

2. Materials and Methods

Different specimens were collected from diverse ecological zones of province Khyber Pakhtunkhwa, Pakistan. This area has variable climate due to different ecological zones. These zones included hilly areas in the North to dry sandy lands in the south, whereas from east to West this province is mainly composed of plain areas except for western dry mountains, which serve as border of Afghanistan.

Insect collection was done for two consecutive years 2012-2013. During each collection process, few members of Chalcididae were found. Among Chalcididae, species of genus *Antrocephalus* were collected from plain areas of the province and none of the species is reported from the hilly areas of the province. Collection of insects was generally carried out with the help of sweep net. However, Malaise traps were also installed in low vegetation especially grasses.

Literature shows that some chalcidids of genus *Antrocephalus* are natural enemies of stored product moth pests such as *Corcyra cephalonica* Stainton (Lepidoptera: Pyralidae) (Sastry & Appanna (1960) [40], Gates (1993) [13], Konishi et al., (2004) [11]), *Ephesia cautella* (Walker) (Lepidoptera: Pyralidae) (Pereira et al., 2013) [41], *Galleria mellonella* L. (Lepidoptera: Pyralidae) (Subha, 1955) [52] and *Opisina arenosella* Walker (Lepidoptera: Xylorctinae) (Abdurahman et al., 1983 [1]), Mohandas & Abdurahiman 1992, 1995 [38, 39]. Potential hosts were also reared in the laboratory at Entomology Museum, The University of Agriculture, Peshawar, Pakistan. Collected specimen were first preserved in 70% ethanol and subsequently transferred to 97% ethanol for 5 hours before mounting on point cards. Chalcididae are too small to pin, therefore specimen were mounted on point cards. Gibson et al., (1979) [15] was followed for morphological terms whereas Harris (1979) [24] was followed for terminology of surface sculpturing.

All specimens were compared with paratypes available at Bohart Museum of Entomology, The University of California, Davis, USA. Microscope Nikon SMZ 745T was used for observation and identification of specimens. Important characters of insects were drawn with the help of Camera (Lucida). Key to the important characters of the species is also provided.

Identified species were deposited in the Insect Museum of the Department of Entomology, The University of Agriculture, Peshawar, Pakistan.

Terminology and abbreviations used in the description are:

- **Metasoma**: The abdomen in Apocrita (Hymenoptera)
- **Petiole**: First metasomal segment
- **T**: Abdominal segment 1
- **OOL**: Ocello-Occular Length
- **POL**: Posterior Occellar Length
- **BMNH**: British Museum of Natural History
- **USNM**: United States National Museum
- **ZDAMU**: Zoology Department Aligarh Muslim University

3. Results

3.1 Genus *Antrocephalus* Kirby, 1883 [30]

Genotype: *Halictella fasciecornis* Walker (Original designation)

Syn. novo

Genotype: Masi.

(For *Dilla* strand, nec Fischer De W Alldheim).

The known synonyms of *Antrocephalus* are: *Coelocharalis* Cameron (1904) [10]; *Stomatoceredra* Girault (1913) [17], *Metarretocera* Girault (1927) [19], *Tainania* Masi (1929) [37], *Sabatiella* Masi (1929) [37], *Stomatocerea* Girault (1930) [20], *Uxa* Girault (1930) [20], *Dillisca* Ghesquiere (1946) [14] and *Uda* Girault (1930) [20].

Published records show *Apis cerana*, *Ceratovacuna langiera*, *Contheyla rotunda*, *Corcyra cephalonica*, *Cydia pomonella*, *Daucyletechrella candida*, *Graptolebista molesta*, *Hapalia machaeralis*, *Homona coffearia*, *Lasiocampidae*, *Pimpla albipalpis*, *Siriocauta testulalis* and *Sitotroga cerealella* as the hosts of genus *Antrocephalus*.

This genus is perhaps the most difficult one among Chalcididae to study taxonomically. Bouček (1988) [8] has discussed in detail the variation as well as the various synonymy involved in this genus. Members of this genus can be recognized by combination of the following characters; structure of preorbital carinae and their relation to the genal or post orbital carina; presence or absence of a distinct glabrous temporal furrow behind the eyes; development of lateral carinae on the pronotum, either stout or nearly joining themselves in the proximity of the apical margin of prothorax; presence or absence of a longitudinal furrow on the scutellum; presence or absence of two parallel carinae at the base of T1; metafemur without lobes or uni, bi or trilobed; metacoxae with or without an inner basal tooth and presence or absence of external carina on metatibia.

Genus *Antrocephalus* Kirby has been identified as a new genus not only for the record of parasitic Hymenoptera in Pakistan but it also adds 2 new species to the records of Khyber Pakhtunkhwa in our current study. Key to the main features of *Antrocephalus* species is provided as under, illustrations of important characters are also provided with the key.

3.2 Key to the species of genus *Antrocephalus* in province Khyber Pakhtunkhwa

3.2.1 Fore wing with postmarginal vein subequal to or shorter than marginal vein, never longer than marginal vein (Fig. 2); propodeum with distinct lateral teeth (Fig. 5); metafemur with an inner basal tooth; legs rufous; gaster rufous or blackish

3.2.2 Forewing with postmarginal vein longer than marginal vein (Fig. 7); propodeum without lateral teeth (Fig. 8); metafemur without an inner basal tooth; legs rusty brown; gaster shining black
Antrocephalus mitys (Walker, 1846) [55]

Haltichella mitys Walker 1846 [55]. Part 1, Chalcidites: 81, ♂, Mauritius (BMNH).
Haltichella simplex Walker (1862) [57]
Haltichella divisicornis Walker (1871) [58]

Description of the Female (n=10, 6 ♀, 4 ♂)

Length: 5.5 - 6.2 mm

Colour
Black. Head, thorax and propodeum completely black with narrow punctuation and silvery pubescence; abdomen dark brown to blackish brown; tegulae dark brown; eyes rusty brown, antennae, fore, mid and hind coxae, trochanter, femur and tibia dark brown with apices of tibia light brown; anteriorly metatibia blackish; forewings with slightly brownish tinge and a slight brown colour below the marginal and stigmal vein; postmarginal vein almost equal to the length of marginal vein; undersides of abdomen light brown; antennal club and interantennal projection rusty brown.

Head
Slightly broader than thorax; OOL 3 times POL; preorbital carina coming up behind the anterior ocellus and meets the auricular carina at the base (Fig. 3); scrobe and scape reaching the anterior ocelli; genotemporal margin with a deep groove; pre and post orbital carina present; frontoascal carina carinate and distinct; antennae just above the eyepleus; antennal scape reaching the anterior ocellus, the length of which is equal to first 5 funicular segments of the antennae.

Thorax
Slightly narrow than head; anterior margin of pronotum with distinct carina but they do not form a tubercle when meet in the middle; scutellum with a furrow starting from anterior margin and reaching to the posterior margin forming two slightly upturned tubercles at the apex of scutellum (Fig. 1); propodeum (Fig. 5) without a median carina, submedian carinae distinct with small cross carinae between them; accessorial carina distinctly forming a raised point of attachment with several cross cariane to the submedian carinae, sublateral carinae meeting with lateral costae at anterior end and joins the lower part of propodeum; semi horizontal spiracles are present between the sublateral carinae and the lateral costae; tarsi are 5 segmented in fore, mid and hindleg, both fore and midfemur are swollen at the top and narrow at the base.

Abdomen
Abdomen longer than thorax, pointed posteriorly with ovipositor; base of abdomen with a small fovea between two very small ridges and without carina; T1 larger in size than combined length of T2-T5.

Type material Examined

Distribution
Australia (Queensland), Afrotrópical, Brazil, India (Kerala, Tripura, Uttar Pradesh), Israel, Kenya, Malaysia, Mauritius, Philippines, Senegal, Seychelles, Sierra Leone, Somalia, Sri Lanka, Thailand (Noyes, 2014) [43] and Pakistan (Peshawar and Swabi, New Records).

Host
Lepidoptera: Coreycra cephalonica (Stainton) (Pyralidae), Lamida moncusalis Walker (Pyralidae), Chilo partellus (Swinhoe) (Crambidae), Ectomyelois ceratoniae (Zeller) (Pyralidae) (Noyes, 2014) [43] and Ephestia cautella (Walker) (Pyralidae) (Pereira et al., 2013) [44]

Yponomeutidae: Ipsolophus ocrphane. (Noyes, 2014) [43]

Plant Associates
Family Fabaceae: Arachis hypogaea, Ceratonia siliqua, Pisum sativum (Noyes, 2014) [43]

Family Poaceae: Oryza sativa, Sorghum sp., Zea mays (Noyes, 2014) [43]
Diagnosis
The species can be identified by having convex metanotum, without longitudinal furrow (Fig. 9); forewing without any brown patch below the marginal or post marginal vein, however wings have brown tinge (Fig. 7); preorbital carina narrowly meets auricular carina, postorbital carina absent (Fig. 10); frontogenal sulcus distinct in lower half, apical half indistinct (Fig. 10); propodeum without lateral teeth (Fig. 8); metafemur with an outer ventral margin weakly bilobed with a row of teeth that starts mid femur and ends till the base, no basal tooth present on metafemur; basal 2 segment of antennal flagellum rusty brown, remaining segments dark brown.

Description of the Female (n=26, 7♀, 19♂)
Length: 5.6 - 6.5mm

Colour
Black. Head and thorax dull black; with small impunctations and gaps between the impunctations; tegulae rust brown, abdomen shining black when viewed from above; abdomen blackish dorsally; eyes pale blackish yellow; all legs rust brown, basal segments of antennae rust brown, apical 7 segments dark brown; forewing with brownish tinge and dark
brown marginal and post marginal vein; coxa, trochanter, femur, and tibia of fore leg, mid leg and hind leg rust brown, tarsi of these legs light brown with a claw at end; propodeum with long silver pubescence on the lower side.

Head

Head slightly wider than longer; scrobe and scape reaching the front ocelli (Fig.10), POL almost 4 times the OOL; vertex slightly depressed in middle when viewed from front; preorbital carina narrowly meets the auricular carina; post orbital carina absent (Fig.10); frontogenal sulcus distinct in lower half, apical half indistinct; genotemporal furrow shallow; scape length almost equal to the combined length of pedicel and 3 anterior segments; length of club 2.3 time the proceeding segment; antennal toruli just above the clypeus.

Mesosoma

Thorax convex, with close pits on the dorsum, interstices narrow, rugose and carinate; prothorax with lateral carina that reach up the middle and meet in the center forming two carinae moving towards head; scutellum jetting over the propodeum; post marginal vein 1.25 \(\times \) marginal vein, marginal and post marginal veins at wing margin (Fig. 7); hind coxa with a well developed dorso basal tooth; metafemur without an inner basal tooth, outer ventral margin weakly bilobed with a row of comb of teeth; propodeum with deep pits, and well developed post spiracular pit on either side, spiracles almost vertical in position (Fig. 8); thorax sub equal to abdomen.

Abdomen

T1 with a shallow pit covered by two small ridges on both the sides of the pit; T2 with small pits and rugae laterally; T3 with a smooth anterior and rough posterior part covered with slight lateral pubescence; T4, 5 entirely rough with small rugae laterally and dorsally; T6 larger in size from T4,5 but smaller than T3 with sparse punctations and rugae.

Material Examined

Male

Males are similar to the females except the abdominal end which is rounded in males.

Distribution

Philippines and Pakistan (Swabi, Peshawar, Charsadda and Nowshehera, New Record).

Host

Not Known

4. **Discussion**

Diagnosis characters of *A. mitys* show that this species can be identified with the help of following character, i.e, by having a longitudinal furrow in the scutellum forming two apical tubercles; forewing with a brown spot under marginal and stigma vein, not under the postmarginal vein; pre and postorbital carina present; frontogenal sulcus distinct and carinate; genotemporal margin with a deep furrow; propodeum with lateral teeth; metafemur with an inner basal tooth and a series of small teeth in one or two lobes. According to
Narendran (1989) [41]. T. with basal carinae on both sides of the median foreva. In our case, there is a small median foreva between two lateral ridges, but without any carina, however remaining characters meet his description. Moreover, the specimen at Bohart Museum of Entomology was also studied and compared with Narendran’s (1989) [41] description and the current description therefore adds more to his findings. The species distribution shows that it is widely distributed species. Host record also shows that the species is restricted to only one Lepidopterous family, Pyralidae. No host from other families has been reported till date. Research needs to be done to find out the host range of this species. Species in current research were collected from the grasses and alfalfa fields during spring season which shows that these parasitoids attack their hosts only in a specific time of the year.

\(A. \text{nics} \) can be identified by having convex metanotum, without longitudinal furrow; forewing without any brown patch below the marginal or post marginal vein, however wings have brown tinge; preorbital carina narrowly meets auricular carina, postorbital carina absent; frontogenal sulcus distinct in lower half; apical half indistinct; propodeum without lateral teeth; metafemur with an outer ventral margin weakly bilobed with a row of teeth that starts mid femur and ends till the base, no basal tooth present on metafemur; basal 2 segments of antennal flagellum rusty brown, remaining segments dark brown. Narendran (1989) [41] mentioned that this species is different from rest of the species by having convex thoracic notum, and with a broad pit on the base of gaster. Our specimen is similar to the description provided by [36] and we did not find any difference from the description he provided. Distribution record of the species shows that it is reported from Philippines only. However current record adds to the knowledge of the species to be distributed in Peshawar, Swabi, Charsadda and Nowshera areas of Khyber Pakhtunkhwa province of Pakistan. Host record of the species is not available.

5. References

1. Abdurahiman UC, Mohamed UVK, Remadevi OK. Studies on the biology of \(\text{Antrocephalus hakonensis} \) (Hymenoptera: Chalcididae), a pupal parasitoid of \(\text{Opsina arenosella} \), the coconut caterpillar. Cocos 1983; 1:11-16.

11. Cowan DP. The function of enlarged hind legs in oviposition and aggression by \(\text{Chalcis canadenses} \) (Hymenoptera: Chalcididae). Great Lakes Entomologist 1979; 12(3); 133-136.

13. Gates S. Self and conspecific superparasitism by the solitary parasitoid \(\text{Antrocephalus pandens} \). Ecological Entomology 1993; 18; 303-309.

17. Girault AA. On several new genera and species of Australian Hymenoptera Chalcidoidea. Canadian Entomologist 1913; 45:101-106

31. Kirby WF. Remarks on the genera of the subfamily Chalcidinae, with synonymic notes and descriptions of new species of Leucospidinae and Chalcidinae. J. Linnean Society of Zoology 1883; 17:53-78.

44. Pereira AIA, Tiago GP, Francisco SR, Sagadai M, José ES, José CZ. *Antrocephalus mitys* (Hymenoptera: Chalcididae) in laboratory cultures of *Tenebrio molitor* (Coleoptera: Tenebrionidae), and possible role in biological control of *Ephestia cautella* (Lepidoptera: Pyralidae). Florida Entomologist 2013; 96(2):634-637.

49. Sheikh MU, Malik KF. Two new and one known species of the genus *Brachymeria* Westwood on Insect pests of Grasses in Lower Sind, Pakistan. Proc. 5th Pakistan Congress of Zoology 1987, 171-175.

57. Walker F. Notes on Chalcidites, and characters of undescribed species. Transactions of the Entomological Society of London 1862; (3) 1:366.

