16S rRNA gene sequencing of the most regnant and pernicious pests *Brevundimonas diminuta*, *Craterium leucocephalum* and *Diachea leucopodia* associated with dried preserved forensically valuable Calliphorids

Devinder Singh, Naina Khullar

Abstract

Calliphorids are forensically most valuable insects. These are collected from the crime site as circumstantial evidence and preserved for the purpose of identification. Though the prima facie of these preserved specimens seems to be in the perfect well maintained state but molecular analysis on these specimens reveal that these are harboured by various pests that are internally calamitous to these specimens and degrade the intact DNA of these specimens into small fragments. *Brevundimonas diminuta* (bacterium), slime molds *Diachea leucopodia*, *Craterium leucocephalum* have been identified as the most regnant and pernicious pests and approximately 500bp of 16S rRNA gene of these have been sequenced for the correct identification of these pests from preserved insect specimens. The author has also attempted to espay the most inimical traits that these pests are equipped with which would in turn help in calibrating effective measures to avoid their infestation and in safeguarding these subtle specimens.

Keywords: 16S rRNA, blow fly, PCR

1. Introduction

Forensic Entomology holds a wide diapason. It is widely defined as the application and study of insects and other arthropods’ biology to criminal matters. There are various approaches contributing to this field like morphologically and morphometrically identifying the type of insect species collected from the corpse. Molecular and genetical aspect dealing with the accurate identification of these specimens is much more informative and reliable than the morphological aspects because most of the time only fragmented remains or pupal cases are available for identification. But such samples are more prone to microbial attack. Thus to preserve such copacetic samples, it is important to identify the detrimental microbes colonising these preserved samples and to avoid their infestation. When isolation of DNA is tried on such samples, most of the times we fail to generate results as these microbes badly hamper the DNA extraction and amplification process. The insect tissue actually gets ruined by decomposing bacteria and only traces of fragmented insect DNA is left in the specimens available for DNA extraction. It becomes mandatory to tab the microbes that harbour and damage the insect collections stacked in various museums. And to fend off these microbes it becomes important to identify the group of microbes that are worst affecting these valuable specimens. 16S rRNA gene is one of the key conserved genes among bacteria and has species specific signature sequences. 16S rRNA gene has been used to study bacterial community structure in *Apis* [1]. It also accumulates mutations more rapidly than the nuclear rDNA genes and can decipher relationships even below family level [2]. It also shows valuable inter and intra specific divergences. All these traits make this gene an important molecular marker for identification. However for Calliphorids, mostly cytochrome oxidase subunit I gene has been used for identification [3, 4]. However no significant relevant citation is known that evinces symbiotic relationship among Calliphorids and *Brevundimonas diminuta*, *Craterium leucocephalum*, *Diachea leucopodia*. Also absence of probable symbiotic association of these pests with the Calliphorids was tested by amplifying fresh samples of Calliphorids under similar conditions, which yielded no positive result (Figure 3). The aim was to check for the microbes that actually are detrimental to these dry collections.

Correspondence:
Devinder Singh
Department of Zoology and Environmental Sciences, Punjabi University, Patiala-147002, India.
2. Materials and Methods

3-10 years old specimens were chosen randomly from the museum collection. These were then washed in distilled water to remove any superficial contaminants. Only legs were dissected out and used for DNA isolation, to avoid any chance of endosymbiotic microbe in insect gut or sequencing of any pathogen. Precautionary measures were strictly followed to avoid any further environmental contamination during DNA extraction. The tissue was crushed using liquid nitrogen. The DNA extraction was carried out using Qiagen Puregene Tissue extraction kit, following manufacture’s protocol. This DNA was then dissolved in Hydration solution and stored at -20 °C. The same protocol was followed for extracting DNA from fresh counter specimens (choosing the same species).

DNA Amplification

The extracted DNA was amplified using microbe specific 16S rRNA primers, namely 16S SarF (5’ CGCCTGTATCAAAAAAT3’) and 16S SarR (5’ CGGGTCTGAACCTAGATCACGT3’) which is known as barcode for the microbes. All polymerase chain reactions were performed using Bio-rad T100TM thermal cycler. The thermal cycler conditions were the following: initial denaturation at 98 °C for 2 minutes followed by 40 cycles at 98 °C for 30 seconds, annealing at 55 °C for 40 seconds, elongation at 75 °C for 1 minute and final elongation at 75 °C for 7 minutes. 50 μl PCR cocktail constituted of Phusion DNA polymerase enzyme 1U/50 μl reaction, 5X Buffer 10 μl, 10 pm dNTP, 50 mM MgCl₂ 1 μl, 10 pm primers 1 ul each and MQ water (Thermo Fisher Scientific, India). 1-4 μl DNA was used for each PCR reaction, depending on the concentration of purified DNA.

Electrophoresis

PCR products were detected by gel electrophoresis in 1.2% agarose gel, stained with ethidium bromide, and visualized under ultraviolet light. Figure 1 shows the amplified DNA bands for *Diachea leucopodia*, *Craterium leucocephalum* while figure 2 depicts the amplicons for *Brevundimonas diminuta* on dry preserved samples. Figure 3 shows no amplification, thus confirming the absence of these pests on the fresh samples.

Sequencing

Using ABI BigDye® Terminator v3.1 Cycle Sequencing reaction kit (Applied Biosystems, USA), the purified PCR amplicons were sequenced. Sequencing was performed on 3130 Genetic analyser Automated DNA sequencing machine. The softwares used for sequence analysis were Sequencing Analysis 5.1; Chromas Pro v3.1. Table 2 enlists the DNA sequences so obtained.

BLAST

BLAST search was carried out to compare these obtained sequences with the database of sequences in the NCBI (National Centre for Biotechnology Information). These organisms were then correctly identified as *Brevundimonas diminuta*, *Craterium leucocephalum* and *Diachea leucopodia*. These were then successfully submitted in the Genbank. The accession numbers so obtained for them are mentioned in Table 1.

Table 1: The table enlists the pernicious microbes and their Genbank accession numbers.

<table>
<thead>
<tr>
<th>Species Type</th>
<th>Genbank Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevundimonas diminuta</td>
<td>Bacterium</td>
</tr>
<tr>
<td>Diachea leucopodia</td>
<td>Myxomycetes</td>
</tr>
<tr>
<td>Craterium leucocephalum</td>
<td>Myxomycetes</td>
</tr>
</tbody>
</table>
3. Results and Discussion

The aim of this study was to identify the most detrimental pests that invade these preserved specimens in insect boxes (insect boxes were fumigated with naphthalene powder). Analysing the preserved dry Calliphoridae samples on a random basis, we could conclude that majority of the worst affected specimens were found to be invaded by these three most pernicious pests and likewise suggests towards stringent methods to eliminate and avoid these specific pests that harbour the valuable insect collection. *Brevundimonas diminuta* is considered one of the major contadders in the process of tissue decomposition as are most common organism in the soil and other moist environments [5]. Also *Brevundimonas diminuta* shows resistance to fluoroquinolones [6]. This bacterium has an *apd* gene which can synthesise an organophosphate hydrolase, OPH, EC3.1.8.1 [7, 8]. This enzyme is also capable of hydrolysing a wide variety of organophosphorous insecticides like paraoxon, ethyl parathion, methyl parathion etc. [9]. Thus, this bacterium is found to be highly inimical. While the plasmodial slime molds *Diachea leucopodia* and *Craterium leucocephalum* secrete hydrolytic enzymes like proteinase and peptidase, thus destroying the insect tissue and exposing the DNA for environmental degradation. Thus these further add to the process of DNA fragmentation.

Thus there is a sincere need to switch over to better and more suitable methods for insect preservation, to keep the collection undamaged for long time. We suggest dipping or spraying Ticarcillin Sodium/ Clavulanate Potassium Powder on such undamaged for long time. We suggest dipping or spraying suitable methods for insect preservation, to keep the collection prudent and managed by the Department of Science & Technology, New Delhi.

5. Disclosure

The authors are not conversant of any memberships, financial holdings, affiliations that could raise a conflict of interest.

6. References

