Floral visitors of basil (*Ocimum basilicum*) at Dera Ghazi Khan, Punjab, Pakistan

Abdul Latif, Abid Mahmood Alvi, Qamar Saeed, Saeed Ahmad Malik, Shafqat Saeed, Hafiz Gulam Ahmad Umar and Naeem Iqbal

Abstract

In the present study, pollinator community of basil (*Ocimum Basilicum L.*) was explored at Dera Ghazi Khan, Punjab, Pakistan. The results indicated that eight bee species, two wasp species, one fly and one butterfly species visited the flowers of *O. basilicum*. Bees were found to be the most abundant floral visitors (1294 individuals) followed by wasp (208 individuals), fly (10 individuals) and butterflies (37 individuals). Among all pollinator species, *Apis florea* and *Apis dorsata* bees had the highest abundance (285 and 272 individuals, respectively). The highest visitation rate was recorded in *Nomia oxybeloides* (10.65±3.6 numbers of flowers/minute) followed by *A. florea* (6.2±3.8 numbers of flowers/minute) while *Zizeeria krasandra* butterfly had the lowest visitation rate (0.93±0.24 numbers of flowers/minute). The maximum visitation frequency (individuals/flower/minute) was recorded in *A. florea* (0.78±0.06) and the lowest in *Vespa orientalis* (0.18±0.01).

Keywords: Insect preferences, flower attraction, pollination, visitation frequency, visitation rate, pollen load

1. **Introduction**

Pollination is an important mechanism in flowering plants that is responsible for reproduction and maintenance the plant species on earth. Different pollination mechanisms have been reported in different plant species, genera and families. Some species are self-incompatible and require cross pollination while others are self-compatible. Even self-compatible plant species give higher yields if they are cross pollinated [1, 2].

Lamiaceae family of plants contains around 200 genera and 3000 species [3]. *Ocimum* is one of the most important genus of family Lamiaceae. This genus comprises 30-160 species which are mostly herbs and shrubs native to Asia, Africa, and Central and South America [4]. Basil (*O. basilicum*) is annual plant and commercially cultivated in many countries for various purposes [5]. Its different parts are used for the treatment of various human ailments including headaches, cough, diarrhea, constipation, warts, worms, and kidney malfunctions [6]. Oils extracted from its leaves and flowers are used in food, fragrances and dental and oral products [7, 8].

Pollination ecology of Lamiaceae family in general and *Ocimum* genus in particular is poorly understood. The present study was envisioned to study pollinator species of *O. basilicum* in Dera Ghazi Khan, Punjab, Pakistan.

2. **Materials and Methods**

The study site was located near the Indus colony, Dera Ghazi Khan (longitude 70° 29' 7" E and latitude 29° 57' 38" N). The experimental area contained undistributed natural habitat and grassy field with large community of mesophytic plants like *Acacia arabica*, *Eucalyptus* sp., *Euphorbia splendens* etc.

2.1 **Pollinators’ survey**

The total abundance (total numbers of individuals of a taxon in an area) of the pollinators was determined from the data recorded during the flowering season by following the methodology of Tidke and Thorat [9]. For visitation frequency of pollinators, 200 branches from 40 plants were selected and each branch was observed for five minutes and the numbers of each pollinator species visiting each branch were recorded. However, the visitation rate was measured by recording the time period spent by a visitor on a single flower.
Each visitor was observed for forty times during the flowering season. To avoid disturbance during data recorded, a specific distance was maintained and observer remained motionless. Observations were recorded during favourable environmental conditions.

2.2 Taxonomic Identification
Pollinators were captured with the help of hand net and killed in ethyl acetate fumes and preserved for identification. The preserved insect pollinators were identified to lowest taxonomic level by using standard identification keys developed by Department of Biology, Valdosta State University. The keys are available at http://entnemdept.ufl.edu/HallG/Melitto/floridabees/Bees_of_Florida_Part1.pdf

3. Results and Discussion
3.1 Pollinator Fauna
There were a total of eight bee species, two wasp species, one fly and one butterfly species captured from the flowers of *O. basilicum*.

3.2 Pollinator’s Abundance
The data revealed the highest abundance of bees as compared to other taxonomic groups (Table 1). However among bees, *Apis florea* (285 numbers) was the most abundant species followed by *Apis dorsata* (272 numbers) while *Lasiosglossum* sp.1 was the least abundant species. *Vespa dorylloides* (114 numbers) had maximum abundance compared to *Vespa orientalis* (94 numbers) wasp. The syrphid fly (*Ischiodon scutellaris*) and butterfly (*Zizeeria krasandra*) had abundances of 10 numbers and 37 numbers, respectively (Table 1).

Table 1: Pollinator’s in the orchid of *Ocimum basilicum* along with their total abundance, visitation rate and visitation frequency at Dera Ghazi Khan, Punjab, Pakistan

<table>
<thead>
<tr>
<th>Order</th>
<th>Taxonomic group</th>
<th>Family</th>
<th>Genus/Species</th>
<th>Total abundance</th>
<th>Visitation rate (No. of flowers visited/min.) (N=40)</th>
<th>Visitation frequency (individuals/branch/minute) (N=200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hymenoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bees</td>
<td></td>
<td>Apidae</td>
<td>Apis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dorsata</td>
<td>272</td>
<td>5.0±3.1</td>
<td>0.32±0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>florea</td>
<td>285</td>
<td>6.2±3.8</td>
<td>0.78±0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amegilla</td>
<td>209</td>
<td>3.96±0.21</td>
<td>0.40±0.06</td>
</tr>
<tr>
<td>Halictidae</td>
<td></td>
<td></td>
<td>Ceratina</td>
<td>125</td>
<td>4.73±2.9</td>
<td>0.69±0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sexmaculata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vespidae</td>
<td></td>
<td></td>
<td>Nomiia</td>
<td>229</td>
<td>10.65±3.6</td>
<td>0.64±0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oxybeloides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Agapostemon</td>
<td>116</td>
<td>3.92±2.4</td>
<td>0.44±0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lasiosglossum</td>
<td>15</td>
<td>1.6±1.0</td>
<td>0.72±0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*sp.*1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lasiosglossum</td>
<td>43</td>
<td>2.25±1.4</td>
<td>0.59±0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dorylloides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td></td>
<td></td>
<td>Vespa</td>
<td>114</td>
<td>2.4±0.2</td>
<td>0.24±0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>orientalis</td>
<td>94</td>
<td>1.8±0.8</td>
<td>0.18±0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dorylloides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera</td>
<td></td>
<td></td>
<td>Ischiodon</td>
<td>10</td>
<td>1.7±0.9</td>
<td>0.83±0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>scutellaris</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zizeeria</td>
<td>37</td>
<td>0.93±0.24</td>
<td>0.34±0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>krasandra</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Conclusion
From the present study, it is concluded that native bees are more efficient and frequent visitor of *O. basilicum* as compared to wasps, flies and butterflies at Dera Ghazi Khan.

5. Acknowledgement
The authors are thankful to Dr. Allah Bakhsh Gulshan (Department of Botany, Ghazi University, Dera Ghazi Khan) for his guidance in the study.

6. References
5. Marotti M, Piccaglia R, Giovanelli E. Differences in
essential oil composition of basil (*Ocimum basilicum* L.)
Italian cultivars related to morphological characteristics.

Basil. A source of aroma compounds and popular
culinary and ornamental herb. In: Janick, J. and J.E.
Simon (eds.). Perspectives on new crops and new uses.
ASHS Press, Alexandria, VA. 1999, 499-505

8. Heath HB. Source book of flavors. AVI, Westport, CT,
1981

9. Tidke JA, Thorat SB. Observations on reproductive
biology of *Madhuca longifolia* (Koen) Maccbr. The
International Journal of Plant Reproductive Biology.

10. Moeller DA. Pollinator community structure and sources
of spatial variation in plant–pollinator interactions in

11. Garratt MPD, Truslove CL, Coston DJ, Evans RL, Moss
ED, Dodson C et al. Pollination deficits in United
2014; 12(2):9-14

12. Gomez JM, Abdelaziz M, Lorite J, Muñoz-Pajares AJ,
Perfectti F. Changes in pollinator fauna cause spatial
98:1243-1252.

best pollinators for canola (*Brassica napus* L.) production
46:353-361.

15. Priti. Abundance and pollination efficiency of insect
visitors of onion bloom. Indian Bee Journal. 1998;
60(2):75-78.