Compatibility of *Metarhizium anisopliae* with neem derivatives *in vitro* condition

Kelwatkar NM, Kankale MD and Das SB

Abstract

The present investigation was carried out during *rabi* 2013-2014 at the Entomology laboratory, College of Agriculture JNKVV, Jabalpur at Completely Randomized Block Design (CRBD). The experiment on compatibility studies was undertaken on four treatments and five replication with neem derivatives. The effect of neem derivatives on the mycelial growth of *M. anisopliae* was conducted in *In vitro*. Among the neem derivatives tested Neem soap 0.5% (w/v) (half recommended dose) was found to be most compatible with least inhibition growth followed by Neem oil 2.5% (v/v) and NSKE 2.5% (w/v). Although the different neem derivatives tested in the present investigations slightly inhibited the growth of *M. anisopliae* in poisoned media, the combined use of the fungus and neem derivatives cannot be completely ruled out. All the neem derivatives tested have been combined with entomopathogenic fungi for obtaining better control of pod borer in chickpea considering this it is worth exploring the effect of these neem derivatives at sub lethal dose with fungus for an enhance result over pest control.

Keywords: Compatibility, *M. anisopliae*, Neem derivatives, *in vitro*

Introduction

Metarhizium causes a disease known as ‘green muscardine’ in insect hosts because of the green colour of its conidial cells. In 1883, Mutschelkoff commenced mass culturing of fungus and carried out the first experiment with two beetle pests. *Metarhizium anisopliae* (Metschnikoff) Sorokin is the second most widely exploited Entomopathogenic fungus in biocontrol trials. Species within the genus *Metarhizium* are pathogenic fungi having broad ranges of insect hosts. *M. anisopliae* was found to be a species complex composed of nine species based on multilocus phylogeny [1]. It is known to attack over 200 species of insects belonging to orders Coleoptera, Dermaptera, Homoptera, Lepidoptera and Orthoptera [2].

With the current thrust on sustainable agriculture and organic farming, the use of botanical products as pesticides has acquired greater significance. Implementation of environmental friendly agricultural practices is essential for the preservation of the quality of life on earth. This has evoked a search for eco-friendly and indigenous botanical pesticides and they will decrease the dependence on the unsafe insecticides [3-7]. Among so many plants investigated, the Indian neem tree, *Azadirachta indica* is a promising source of botanical insecticides [8]. Neem extracts make the ideal insect control for impoverished farmers worldwide by providing a safe, inexpensive and very effective insect control for both ends of the agricultural spectrum. When the microscopic spores of the fungus comes into contact with the body of an insect host, they germinate, penetrate the cuticle, and grow inside, killing the insect within a matter of days [9-10]. Biopesticides made from neem are biodegradable, non-toxic, eco-friendly and have no residual effect on agriculture produce. Keeping the fact in background the present investigation are undertaken on compatibility of *Metarhizium anisopliae* with neem derivatives under laboratory condition.

Materials and Methods

The experiments were carried out during *rabi* 2013-2014 at the Entomology laboratory, College of Agriculture JNKVV, Jabalpur under Completely Randomized Block Design (CRBD). The experiment on compatibility studies was undertaken on four treatments and five replications with neem derivatives (Table 1). Studies on compatibility of neem derivatives with *M. anisopliae* were evaluated by poisoned food technique in Potato Dextrose Agar (PDA) medium. For this purpose, 20 ml of PDA medium having neem derivatives of required concentration were poured into petriplates...
aseptically and allowed to solidify under laminar flow cabinet. A 5 mm disc of fungus was taken from 10th day old culture of <i>Metarhizium anisopliae</i> and placed at the center of the petriplate containing PDA. Growth medium (PDA) without neem derivatives but inoculated with mycelial disc served as untreated check. The plates were incubated in BOD cabinet. A 5 mm disc of fungus was taken from 10th day old culture of <i>Metarhizium anisopliae</i> and placed at the center of the petriplate containing PDA. Growth medium (PDA) without neem derivatives but inoculated with mycelial disc served as untreated check. The plates were incubated in BOD at 25°C and periodic observations were taken at 2 days interval. Each treatment was replicated five times. The diameter of the growing culture was taken at 2 days interval and it continued upto 10th day. The data were expressed as growth inhibition of <i>Metarhizium anisopliae</i> in neem derivatives treated PDA [11].

\[
X = \frac{Y - Z}{Y} \times 100
\]

Where X, Y, Z stand for percentage of growth inhibition, radial growth of fungus in untreated check and radial growth of fungus in poisoned medium, respectively.

Table 1: Treatment details of compatibility of <i>Metarhizium anisopliae</i> with neem derivatives - *in vitro* studies

<table>
<thead>
<tr>
<th>Treatment Code</th>
<th>Treatments</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>1</sub></td>
<td>Metarhizium anisopliae + NSKE</td>
<td>1×10<sup>8</sup> spores/ml + 2.5% w/v</td>
</tr>
<tr>
<td>T<sub>2</sub></td>
<td><i>M. anisopliae</i> + Neem oil</td>
<td>1×10<sup>8</sup> spores/ml + 2.5% v/v</td>
</tr>
<tr>
<td>T<sub>3</sub></td>
<td><i>M. anisopliae</i> + Neem soap</td>
<td>1×10<sup>8</sup> spores/ml + 0.5% w/v</td>
</tr>
<tr>
<td>T<sub>4</sub></td>
<td><i>M. anisopliae</i></td>
<td>1×10<sup>8</sup> spores/ml</td>
</tr>
</tbody>
</table>

Statistical Analysis
All the data were subjected to statistical analysis after appropriate transformation as suggested by [12].

Results and Discussion
An experiment was conducted in the laboratory to screen some of the neem derivatives recommended to control gram pod borer in chickpea, for their toxic effect on the growth of <i>Metarhizium anisopliae</i>.

(i) Growth performance of <i>Metarhizium anisopliae</i> in different neem derivatives media:
Data on growth performance of <i>M. anisopliae</i> in different neem derivative media are presented in Table 2 and depicted in Fig. 1.

(ii) Growth inhibition percentage of <i>M. anisopliae</i> in different neem derivative media:
The data on effects of neem derivatives on the growth inhibition of <i>M. anisopliae</i> are presented in Table 2 and depicted in Figure 1.

Two days after inoculation
At two days after inoculation, the differences in the mean growth of <i>Metarhizium anisopliae</i> on different media were significant. Among the treatments, Neem soap showed maximum growth (25.40 mm) at recommended half dose @ 0.5% (w/v) and was found to be the most compatible biopesticide. This was followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) and they recorded a growth of 23.20 mm and 22.80 mm, respectively. While in the control plate maximum growth of 35.60 mm was observed.

Four days after inoculation
At fourth day after inoculation, the differences in the mean growth of <i>M. Anisopliae</i> among different treatments were significant. Among the treatments, Neem soap showed maximum growth (32.80 mm) at recommended half dose @ 0.5% (w/v) and was found to be the most compatible biopesticide followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) (32.60 mm and 32.20 mm, respectively). The control plate maximum growth of 52.80 mm.

Six days after inoculation:
At sixth day after inoculation, the differences in the mean growth of <i>M. Anisopliae</i> among different treatments were significant. Among the treatments, Neem soap showed maximum growth (39.80 mm) at recommended half dose @ 0.5% (w/v) and was found to be the most compatible biopesticide followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) (39.60 mm and 39.20 mm, respectively). The control plate recorded maximum growth of 69.20 mm.

Eight days after inoculation
At eighth day after inoculation, the differences in the mean growth of <i>M. Anisopliae</i> among different treatments were significant. Among the treatments, Neem soap showed maximum growth (49.80 mm) at recommended half dose @ 0.5% (w/v) and was found to be the most compatible biopesticide followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) (48.60 mm and 47.80 mm, respectively). The control plate recorded maximum growth of 84.80 mm.

Ten days after inoculation
At tenth day after inoculation, the differences in the mean growth of <i>M. Anisopliae</i> among different treatments were significant. Among the treatments, Neem soap showed maximum growth (61.80 mm) at recommended half dose @ 0.5% (w/v) and was found to be the most compatible biopesticide followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) (61.40 mm and 61.20 mm, respectively). The control plate recorded maximum growth of 87.60 mm.

Mean
On the overall basis among the neem derivatives tested, Neem soap showed maximum growth (41.92 mm) at recommended half dose @ 0.5% (w/v) and was found to be the most compatible biopesticide followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) (41.08 mm and 40.64 mm, respectively). The control plate recorded maximum growth of 66.00 mm.

Two day after inoculation
All the treatments showed significant differences in growth inhibition of <i>M. Anisopliae</i> in different neem derivatives treated media. Among the neem derivatives tested, Neem soap showed least growth inhibition (28.62%) at recommended half dose @ 0.5% (w/v) and was found to be the most compatible biopesticide, followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) which recorded growth inhibition of 34.86% and 35.92%, respectively.

Four days after inoculation
All the treatments showed non-significant differences in growth inhibition of <i>M. Anisopliae</i> in different neem derivatives treated media. Among the neem derivatives tested, Neem soap showed least growth inhibition (37.86%) at recommended half dose @ 0.5% (w/v) and was found to be
the most compatible biopesticide, followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) which recorded growth inhibition of 38.23% and 39.00%, respectively.

Six days after inoculation
All the treatments showed non significant differences in growth inhibition of *M. anisopliae* in different neem derivatives treated media. Among the neem derivatives tested, Neem soap showed least growth inhibition (42.44%) at recommended half dose @ 0.5% (w/v) and was found to be the most compatible biopesticide, followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) which recorded growth inhibition of 42.76% and 43.32%, respectively.

Eight days after inoculation
All the treatments showed non-significant differences in growth inhibition of *M. anisopliae* in different neem derivatives treated media. Among the neem derivatives tested, Neem soap showed least growth inhibition (42.44%) at recommended half dose @ 0.5% (w/v) and was found to be the most compatible biopesticide, followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) which recorded growth inhibition of 42.76% and 43.32%, respectively.

Ten days after inoculation
All the treatments showed non significant differences in growth inhibition of *M. anisopliae* in different neem derivatives treated media. Among the neem derivatives tested, Neem soap showed least growth inhibition (29.45%) at recommended half dose @ 0.5% (w/v) and was found to be the most compatible biopesticide, followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) which recorded growth inhibition of 30.14% and 30.41%, respectively.

Mean
All the treatments showed significant differences in growth inhibition of *M. anisopliae* in different neem derivatives treated media. Among the neem derivatives tested, Neem soap showed least growth inhibition (36.48%) at recommended half dose @ 0.5% (w/v) and was found to be the most compatible biopesticide, followed by Neem oil @ 2.5% (v/v) and NSKE @ 2.5% (w/v) which recorded growth inhibition of 38.25% and 38.28%, respectively. The effect of neem derivatives on the mycelial growth of *M. anisopliae* was conducted in *in vitro*. All the treatments showed significant mycelial growth, but less than control. Among neem derivatives tested, Neem soap 0.5% (w/v) (half recommended dose) was found more compatible with least growth inhibition percentage followed by Neem oil 2.5% (v/v) and NSKE 2.5% (w/v). The present findings are in conformity with the findings of [13-17]. They also reported that neem oil less than 0.25% or neem derivatives less than 5% were relatively less toxic for mycelial growth and spores of *M. anisopliae*.

Although the different neem derivatives tested in the present investigations inhibited the growth of *M. anisopliae* in poisoned media *in vitro*, the combined use of the fungus and neem derivatives cannot be completely ruled out. All the neem derivatives tested in this study have been combined at half recommended dose with entomopathogenic fungi for obtaining better control of pod borer in chickpea considering this, it is worth exploring the effect of these neem derivatives at sublethal dose with fungus for an enhance result over pest control.

![Fig 1: Growth and growth inhibition of *Metarhizium anisopliae* on different media](image1.png)

![Table 2: *In vitro* studies on compatibility of *Metarhizium anisopliae* with neem derivatives](table2.png)

<table>
<thead>
<tr>
<th>Treatment nos.</th>
<th>Treatment</th>
<th>Dose</th>
<th>Performance of M. anisopliae in different media (at DDAI)</th>
<th>Growth (mm)</th>
<th>Growth inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>M. anisopliae+ NSKE</td>
<td>10⁴ spores/ml + 2.5% (w/v)</td>
<td>22.80</td>
<td>32.20</td>
<td>39.20</td>
</tr>
<tr>
<td>T2</td>
<td>M. anisopliae+ Neem oil</td>
<td>10⁴ spores/ml + 2.5% (v/v)</td>
<td>23.20</td>
<td>32.60</td>
<td>39.60</td>
</tr>
<tr>
<td>T3</td>
<td>M. anisopliae+ Neem soap</td>
<td>10⁴ spores/ml + 0.5% (v/v)</td>
<td>25.40</td>
<td>32.80</td>
<td>39.80</td>
</tr>
<tr>
<td>T4</td>
<td>Control</td>
<td>1×10⁴ spores/ml</td>
<td>35.60</td>
<td>52.80</td>
<td>69.20</td>
</tr>
</tbody>
</table>

Max. temp. 38.7± 2.8°C; Min. temp. 30.2 ± 5.8°C; DDAI =Different days after inoculation

*= Figures in parentheses are arcsin-transformed values
Conclusions
In vitro studies on compatibility of *M. anisopliae* with neem derivatives showed that neem soap was most compatible with least inhibition in mycelial growth.

Acknowledgements
The authors express thanks to Head, Department of Entomology, College of Agriculture, JNKVV, Jabalpur (M. P.) for providing all the facilities to conduct work.

References
15. Enrique Castiglioni, José Djair Vendramim, Sérgio Batista Alves. Compatibility between *Beauveria bassiana* and *Metarhizium anisopliae* with Nimkol-L® in the control of *Heterotermes tenus*. Manejo Integrado de Plagas y Agroecologia. 2003; 69:38-44.