Growth performance of *Pangasius Sp.* cultured at different stocking density in floating net cages in Mahi Bajaj Sagar Dam of Banswara (Rajasthan)

Manoj Vaishnav, SK Sharma, BK Sharma and ML Ojha

Abstract

The study dealt with the comparative growth performance of *Pangasius sp.* cultured at different stocking density in floating net cages in Mahi Bajaj Sagar dam of Banswara (Rajasthan). The experiment was conducted in 05 replications at 03 stocking densities in 15 floating net cages of the size-3.65 x 3.65 x 5.48 m (L x W x D). The stocking densities were: T1 (2600 fish fingerling/cage), T2 (2800 fish/cage) and T3 (3000 fish/cage). During experiment of 60 days, the fingerlings of pangas (*Pangasius hypophthalmus*) were fed on commercial floating pelleted feed given to fish @ 5% of their body weight per day. The fish were properly maintained for good health by regular feeding schedule and use of prophylactic measures and probiotics. The results indicated that the weight gain (NWG), specific growth rate (SGR), food conversion ratio (FCR) and gross conversion efficiency (GCE) were significantly different (P<0.05) in all the treatments. Still, the significantly higher growth performance was observed in T1. In this treatment NWG, SGR and GCE were the highest 289.570±0.928g, 1.698±0.019 and 0.852±0.002 respectively. The lowest FCR (1.74±0.004) was also recorded in T1 compared to all other treatments. The net yield in 60 days was maximum in T1 (9.080/m²) and per cent increase in biomass was maximum (176.955%) in T1. The fish growth was maximum at 30-45 days of observation which corresponds with water temperature of 23.68±2.07°C, pH-8.54±0.13 and dissolved oxygen 8.26±0.10 mg/l. The higher Ponderal index was noticed in T1 i.e. 2.403±0.057 indicating wellness of fish. Through this study we can recommended that in above conditions 2600 fingerlings of *Pangasius hypophthalmus* stocked in each floating net cage gives maximum growth and per cent increase in fish yield.

Keywords: Floating net cages, Growth, Commercial floating pellet, Ponderal index, *Pangasius hypophthalmus*

Introduction

Cage culture is an emerging technology through which fishes are reared from fry to fingerling, fingerling to table size or marketable size while captive in an enclosed space that maintains the free exchange of water with the surrounding water body. A cage is enclosed on all sides with mesh netting made from synthetic material that can resist decomposition in water for a long period of time. The on-growing and production of farmed aquatic organisms in caged enclosures has been a relatively recent aquaculture innovation. However, the origins of the use of cages for holding and transporting fish for short periods can be traced back almost two centuries ago to the Asian region (Pillay and Kutty, 2005) [10]. Modern cage culture in open water-bodies, probably originated in Japan in early 1950s.

Among various candidate fish species, *Pangasius sp.* is cultured due to its good market demand and fast growth. Few countries dominate its culture production. Being the third most important freshwater fish group within aquaculture sector, *Pangasius* is now cultured in several countries in the world like Thailand, Nepal, Pakistan, India, Bangladesh, Vietnam, Laos, Myanmar, Indonesia, and Cambodia. *Pangasius* is an air-breathing fish that can tolerate low dissolved oxygen (DO) content in the water and can be cultured in ponds, concrete tanks, fish cages or pens.

Government of India defines reservoirs as man-made impoundments created by obstructing surface flow, by erecting a dam of any description on a river, stream or any water course. However, water bodies less than 100 ha in area have been excluded from this definition. The Ministry of Agriculture, Government of India has classified reservoirs as small (<1000 ha), medium (1,000 to 5,000 ha) and large (>5000 ha) for the purpose of fisheries management, although different states have varied classifications.
The estimated cumulative areas are 1,485,557 ha, 507,298 ha and 1,160,511 ha of small, medium, and large reservoirs, respectively (Sugunan, 1995).[12] The present study has been selected for evaluating the growth performance of Pangasius hypophthalmus cultured in floating net cages installed in Mahi Bajaj Sagar Dam in Banswara district of Rajasthan. The present study also bears its importance as this fish species is being recently cultured in Rajasthan. Further, the culture and yield performance of net cages also need to be evaluated as this time these cages have been installed for the aquaculture on large scale in Rajasthan waters. Recently State Fisheries Department of government of Rajasthan has installed 40 floating cages in Mahi Bajaj Sagar Dam of Banswara for culture of Pangasius hypophthalmus. The project has been launched under the technical supervision of the Central Inland Fisheries Research Institute (CIFRI), Barrackpore, (West Bengal) for aquaculture with the funding of Rs 2 crores from the Union Government. Presently, the cages have been stocked with fingerlings of exotic Pangas in cages at high density of 2000-3000 per cage. The fish is fed with floating feed pellets.

Material and Methods
Experimental fish: The fish selected for the present study is Sutchi catfish Pangasius hypophthalmus which was very recently introduced as culture fish in newly established floating net cages installed in Mahi Bajaj Sagar Dam.

Experimental feed: The experimental fish were fed with commercial fish feed i.e. in the form of floating pellets. The feed was given once a day in the morning hours between 7.00 -8.30 by broadcasting evenly over the cage at fixed time every day. The fishes were fed at the rate of 5% of their body weight each day.

Experiment setup: The proposed experiment was conducted by intervening the currently ongoing cage culture in 15 net cages with three different stocking densities of Pangasius hypophthalmus being cultured in Mahi Bajaj Sagar dam by the Department of Fisheries (Government of Rajasthan). The size of the cage was 3.65x3.65m. with a depth of 5.48m. There were three densities of fishes viz. 2600, 2800 and 3000 fingerlings per cage. The mesh size, material of net and structure of net cages was recorded while performing the study. The observations for mean weight and length of experimental fish along with feed given was recorded initially and thereafter at fifteen days weight gain were estimated at fortnightly intervals.

Water Quality Analysis: Water quality parameters such as temperature, pH, dissolved oxygen total alkalinity, free CO₂, electrical conductivity and total dissolved solids were analyzed on initial day and subsequently at fortnightly intervals following standard methods.

<table>
<thead>
<tr>
<th>Feed No.</th>
<th>Feed Code</th>
<th>Die size- mm</th>
<th>Crude (protein min. %)</th>
<th>Crude fat (min. %)</th>
<th>Crude (fibre max. %)</th>
<th>Moisture (max. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2532518</td>
<td>1.8</td>
<td>32</td>
<td>5.0</td>
<td>5.5</td>
<td>11</td>
</tr>
</tbody>
</table>

Result and Discussion
Fish growth is a complex process governed by many parameters like fish species, nutrient present in the feed, feed additives and rearing environment individually or in combination. In the present study, the weight gain, specific growth rate, food conversion ratio and gross conversion efficiency were significantly different (P<0.05) in all the treatments. Still, the better growth performance was observed in treatment T₃ (stocking density 2600 fish/cage). In this treatment the net weight gain (NWG) was 289.570±0.928g

Growth Parameters: The growth performance of experimental fish weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR) and gross conversion efficiency were estimated at fortnightly intervals.

1. Weight Gain: The body weight of Labeo rohita (Ham.) fingerling was obtained initially and thereafter at fifteen days interval up to completion of the experiment i.e. 60th days.

Weight gain (g) = Final weight (g) - Initial weight (g)

2. Specific Growth Rate (SGR)

SGR (%) = (Ln Wt - Ln Wo) × 100
D

3. Feed Conversion Ratio (FCR)

FCR = Weight of food given (g) / Weight gain of fish (g)

4. Gross Conversion Efficiency (GCE)

GCE = Weight gained (g) / Food given (g)

5. The Condition factor or Ponderal Index of the experimental fish in each cage was determined following LeCren (1951).

Condition factor or Ponderal Index = \[W \times 100 \]
\[L^3 \]

Where, W = Observed weight of fish in gram
L = Total length of fish in cm

a. Yield Analysis
The mean initial weight of the total biomass in a cage was calculated using the following formula.

Initial Biomass (kg) = Mean weight of fishes during commencement (kg) × Stocking density (no. of fishes in each cage)

The final biomass (Gross yield) in each cage was determined as,

Final Biomass (kg) = Mean weight of fish during final observation (kg) × Stocking density (no. of fishes in each cage)

The net yield in each cage was determined by-

Net Yield (kg) = Final Biomass (kg) – Initial Biomass (kg)
and specific growth rate (SGR) was also highest (1.698±0.019). The lowest FCR (1.174±0.004) was recorded in T1 compared to all other treatments. The gross conversion efficiency (GCE) for this treatment was (0.852±0.002). In T1 (stocking density 3000 fish/cage) the over all growth of fish was the lowest. The statistical analysis of data has revealed significant variations in the result of weight gain, SGR, FCR and GCE.

Influence of stocking densities on growth (weight gain) have been evaluated with sutchi catfish by (Islam et al. 2006) [4] have found higher stocking density resulted in higher yield per unit of production cost and lower cost per unit of yield, with a net revenue being higher with increasing stocking density. They reported that at the end of 150 days, the growth and yield parameters were studied and a simple economic analysis was performed to calculate profitability. The net yield in the present study varied from 642.660±2.603, 703.330±3.613 and 748.630±4.046 at density of 2600, 2800 and 3000 fish/cage respectively. This figure when converted to per m³ with size of 73.40 m³/cage turns to be 8.630, 8.893 and 9.080 kg/m³. However (Islam et al. op cit) found a Gross yields were 15.6 ± 0.27, 17.1 ± 0.31, 19.5 ± 0.30, 21.9 ± 0.29, 26.8 ± 0.22, 28.6 ± 0.40, 30.0 ± 0.37, 31.1 ± 0.45, 32.7 ± 0.31, and 34.5 ± 0.44/kg m⁻³; net yields were 15.2 ± 0.22, 16.7 ± 0.28, 19.0 ± 0.29, 21.3 ± 0.21, 26.2 ± 0.19, 27.9 ± 0.33, 29.3 ± 0.33, 30.3±0.37, 31.8 ± 0.29 and 33.5 ± 0.36 kg/m⁻³, respectively, with stocking densities of 60, 70, 80, 90, 100, 110, 120, 130, 140, and 150 fish/m³. The authors noted that the mean weights of fish at harvest were inversely related to stocking density which in similar to the results of present study. Both gross and net yields were significantly different and were directly influenced by stocking density, but the survival rates and feed conversion were unaffected.

Rowland et al. (2006) [14] reported that silver perch fingerlings (range mean weights, 109.3–115.4 g) were stocked at densities of 12, 25, 50, 100 or 200 fish/m³ in cages (1 m³) in an aerated, 0.32ha earthen pond, with four replicate cages for each density. Fish were fed a formulated diet containing 32% crude protein and 13 MJ/kg energy and cultured for 210 days. Water temperatures ranged from 20.6 to 29.8 °C. The high survival, relatively fast growth, low variation in weight and high production rates of silver perch stocked at 100 or 200 fish/m³ demonstrate that cages are a viable alternative to ponds for the commercial production of silver perch.

Net weight gain of *Pangasius hypophthalmus* fingerlings cultured in cages

Weight gain of *Pangasius hypophthalmus* fingerlings in cage culture

SGR of *Pangasius hypophthalmus* fingerlings in cage culture

FCR of *Pangasius hypophthalmus* fingerlings in cage culture

GCE of *Pangasius hypophthalmus* fingerlings in cage culture

Condition factor (Ponderal Index) of *Pangasius hypophthalmus* fingerlings in cage culture
Conclusion
1. The fish growth was higher in the lowest density (T1) i.e. 2600 fish/cage or 35.42/m³.
2. The per cent increase in biomass was maximum i.e. 59.63% in the lowest density (T1) i.e. 2600/cage.
3. The fish growth was maximum at 30-45 days of observation which corresponds with water temperature 23.68±2.07, pH- 8.54±0.13 and dissolved oxygen 8.26±0.10 mg/l.

Through the findings of present study we can recommended that 2600 fingerlings of Pangasius hypophthalmus stocked in each cage gives maximum fish growth and maximum % increase in fish yield with properly maintaining the feeding schedule and fish health.

Acknowledgement
The authors are thankful to the University (MPUAT, Udaipur) administration and especially the Dean College of Fisheries, Udaipur for providing necessary facility for this research.

References