Pathological and biochemical study on liver of male mice intoxicated with thioacetamide

Hadeer AA and Bushra I AL-Kaisie

Abstract
The present study is aimed to study the hepatotoxic effect of thioacetamide on male mice. This study was carried out at college of veterinary medicine, Baghdad from November 2016 to April 2017. One hundred twenty albino male mice were divided into two groups. First group was control. The second group divided into three subgroups. The first subgroup received thioacetamide intraperitoneally 100 mg/kg for two months. The second subgroup received thioacetamide intraperitoneally 100 mg/kg for four months. The third subgroup received thioacetamide intraperitoneally 100 mg/kg for six months. All animals were euthanized and blood samples were taken for biochemical analysis and liver sample obtained and fixed in 10% normal buffer formalin for routine histopathological examination. Results showed significant increase in Alkaline phosphatase, Alanine Aminotranspherase, Aspartate Aminotranspherase and Bilirubin while showed significant decrease in Glutathione and peroxynitrite radicals concentration. Histopathological changes characterized by centrilobular necrosis, fibrosis, liver cirrhosis and hyperplasia of bile ducts.

Keywords: thioacetamide, biochemical, pathological, glutathione

1. Introduction
The TAA is a thioamide compound that usually preserved and stored at room temperature [1, 2]. It is soluble in water and ethanol, miscible with benzene, petroleum, and sparingly soluble in ether. It can be hydrolyzed by acids or bases and it reacts with salts of heavy metals. The substance decomposes by burning producing toxic fumes such as nitrogen oxides and sulfur oxides [3] and it is a chemical reagent was found potent hepatotoxin, hepatocarcinogen in experiment animals models [4, 5, 6]. The influence of TAA is not limited to liver because it can cause structural and functional changes in spleen, lung, brain, stomach, kidney and intestine [7, 8, 9]. It has been used as a fungicide, chemical reagent, organic solvent, accelerator in the vulcanization of rubber, textile, dye, paper and as a stabilizer of motor oil [10, 11]. Currently, TAA is used only as a replacement for hydrogen sulfide in qualitative analyses [1, 2] and as a reactant in producing metal salt nanoparticles [12, 13]. Cirrhosis is defined as damage of liver cells and gradual replacement with scar tissue that impair blood flow through the liver, causing hepatocytes death and loss of normal function [14]. Cirrhosis is advanced stage of fibrosis and it is a critical stage of chronic hepatitis that can produce liver failure. It may be due to viral infection, toxic agents or alcohol [15]. Oxidative stress has been accused in the genesis of acute and chronic liver damage in many conditions such as toxin exposures, bile duct obstruction, excess alcohol intake, liver ischemia and viral infection [16]. Overproduction of ROS and nitrogen species, together cause significant decrease of antioxidant production in these pathological conditions [17]. Oxidative stress produced by free radicals has been implicated in the pathogenesis of acute liver injury [18]. The aims of the present investigation to study the hepatotoxicity of TAA (fibrosis and cirrhosis) by assays of hepatic enzymes, glutathione, total bilirubin concentration in serum and Pathological changes in hepatic tissues.

2. Materials and Methods
2.1 Chemicals and reagents
Thioacetamide obtained from Qualikems – India. It was administered at a dose of 100 mg/kg body weight intraperitoneally according to Lieber [19].

2.2 Animals and diets
120 male albino mice with three months age and body weight ranged between 30 and 35 g

Hadeer AA
Department of pathology, College of Veterinary medicine, University of Baghdad, Iraq

Correspondence
Hadeer AA
Department of pathology, College of Veterinary medicine, University of Baghdad, Iraq
were used to perform the present study. Animals were housed in plastic cages of 60x10x10 cm³ dimensions. Stander rodent diet (commercial feed pellets) and drinking water were given. Housing condition were maintained at 22±25 °C, with controlled lightening using automatic electrical timer providing daily light of twelve hour (7.00 Am to 19.00 Pm) and twelve hour night cycle. The litters of the cages were changed every seven days.

2.3 Preparation of doses and treatment
Thioacetamide was freshly dissolved in distilled water and administrated to mice at a dose of 100 mg/kg B.W. injected intraperitonially, monthly.

2.4 Experimental design
Animals were randomly divided into 2 groups of mice, namely: control group of 30 mice received normal diet only, treated group of 90 mice were divided into 3 subgroups as follow:
1st group (G1) 30 mice received TAA dose (100 mg/kg B.W) monthly for 2 months (2 injections) I/P.
2nd group (G2) 30 mice received TAA dose (100 mg/kg B.W) monthly for 4 months (4 injections) I/P.
3rd group (G3) 30 mice receive TAA dose (100 mg/kg B.W) monthly for 6 months (6 injections) I/P.

At the end of experiment all animals sacrificed were after 2, 4, 6 months subsequent biochemical and pathological studies.

2.5 Determination of oxidative enzymes
2.5.1 Determination of serum glutathione (GSH) concentration (μm/l)
Detection of serum glutathione is depended on the action of sulphydryl groups 5, 5 dithiobis (2- nitrobenzoic acid)(DTNB) which is adisulfide chromogen that is readily reduced by sulphydryl group of (GSH) to an intensive yellowish compound [20].

2.5.2 Determination of serum peroxynitate radical concentration (n/l)
Peroxynitrate ONOO - from nitrophenol was absorbed at 412 nm. The amount of nitrophenol that was formed in the serum reflects the level of peroxynitrite in the serum by a method described by Vanuffelen [21].

2.6 Determination of liver enzymes
2.6.1 Serum transamination
Colorimetric method for detection of ALT and AST in serum was done by using of AST and ALT kits [22].

2.6.2 Alkaline phosphatase
Serum ALP concentration was enzymatically measured using standard assay (ALP-Kit) [23].

2.6.3 Total bilirubin
The total bilirubin was evaluated in the mouse serum using a commercial kit produced by Giesse Company [24].

2.7 Histopathological study
All animals were sacrificed by inhalation of chloroform and postmortem was done for all animals. Liver and kidney, macroscopically examined to record any abnormal changes. Specimens were collected from these organs, then kept in 10% formalin fixative, then processed routine procedure by using the histokinette [25].

2.8 Statistical analysis
Data were analyzed by using complete randomized design (C. R. D.) in factorial experimental by using two ways analyses of variance (ANOVA) to compare between means, and Duncan multiple range test [26] was applied. Data were analyzed using statistical analysis system [27].

3. Results
3.1 Biochemical analysis
G3 showed significant increased P<0.05 in ALP serum concentration compared with G2 and G1, respectively: G3 (273.25 ± 1.50), G2 (200 ± 0.96) and G1 (164 ± 0.63). In ALT serum concentration, G1 (100.23 ± 1.40), G2 (170 ± 0.42) and G3 (233.94 ± 1.70), showed significant P<0.05 increased compared with control while in ALT G3 serum concentration noted significant P<0.05 increase compared with G2 and G1. AST serum concentration G1 (350.92 ± 1.50), G2 (490.27 ± 0.23) and G3 (604.57 ± 1.33) observed significant P<0.05 increase compared with control while in ALT G3 serum concentration noted significant increase compering with G2 and G1. In Bilirubin serum concentration G1 (39.7 ± 0.60), G2 (44.52 ± 1.30) and G3 (53.29 ± 0.040) showed significant P<0.05 increase compering with control while Bilirubin G3 serum concentration noted significant P<0.05 increase compared with G2 and G1.

Table 1: At 2, 4 and 6 months showed significant increased P<0.05 in serum concentration of ALP, ALT, AST and Bilirubin G1, G2 and G3 compared to control group

<table>
<thead>
<tr>
<th>Groups</th>
<th>ALP u/L</th>
<th>ALT u/L</th>
<th>AST u/L</th>
<th>Bilirubin Mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>50.32 ± 1.20</td>
<td>50.75 ± 1.25</td>
<td>189.52 ± 1.94</td>
<td>20 ± 0.83</td>
</tr>
<tr>
<td>G1 1 months</td>
<td>164 ± 0.63*</td>
<td>100.23 ± 1.40*</td>
<td>350.92 ± 1.50*</td>
<td>39.7 ± 0.60*</td>
</tr>
<tr>
<td>Control</td>
<td>50.22 ± 0.25</td>
<td>50.33 ± 0.96</td>
<td>189.47 ± 0.88</td>
<td>20 ± 0.85</td>
</tr>
<tr>
<td>G2 4 months</td>
<td>200 ± 0.96**</td>
<td>170 ± 0.42**</td>
<td>490.27 ± 0.23**</td>
<td>44.52 ± 1.30**</td>
</tr>
<tr>
<td>Control</td>
<td>50.29 ± 0.14</td>
<td>50.27 ± 0.45</td>
<td>189.54 ± 0.04</td>
<td>20.12 ± 0.15</td>
</tr>
<tr>
<td>G3 6 months</td>
<td>273.25 ± 1.50***</td>
<td>233.94 ± 1.70***</td>
<td>604.57 ± 1.33***</td>
<td>53.29 ± 0.040***</td>
</tr>
</tbody>
</table>

(Mean ± S.E)*Signifcant at P<0.05 (Values are expressed as mean ± S.E. (G=n=30, Control n=10). The stars denoted that significant differences between administration).

3.2 Oxidative enzymes
G3 showed significant P<0.05 decrease in glutathione concentration compared with G2 and G1 respectively: G3 (3.24 ± 0.84), G2 (5.72 ± 1.30) and G1 (7.23 ± 0.27).
Table 2: At 2, 4 and 6 months showed significant decrease $P<0.05$ in serum concentration of glutathione G1, G2 and G3 compared with control.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Glutathione (μM/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10.72 ± 0.13</td>
</tr>
<tr>
<td>G1 2 months</td>
<td>7.23 ± 0.27*</td>
</tr>
<tr>
<td>Control</td>
<td>10.62 ± 0.52</td>
</tr>
<tr>
<td>G2 4 months</td>
<td>5.72 ± 1.30**</td>
</tr>
<tr>
<td>Control</td>
<td>10.57 ± 0.17</td>
</tr>
<tr>
<td>G3 6 months</td>
<td>3.24 ± 0.84***</td>
</tr>
</tbody>
</table>

(Means ± S.E)*Significant at $P<0.05$ (Values are expressed as mean ± S.E. (G n=30, Control n=10). The stars denoted that significant differences between administration).

G3 showed significant decrease $P<0.05$ in peroxynitrate radicals concentration comparing with G2 and G1 respectively: G3 (3.62 ± 0.73), G2 (5.28 ± 0.05) and G1 (7.3 ± 0.47).

Table 3: At 2, 4 and 6 months showed significant decrease $P<0.05$ in serum concentration of peroxynitrate radicals G1, G2 and G3 compared with control.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Peroxy nitrate radical concentration (μM/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10.22 ± 0.03</td>
</tr>
<tr>
<td>G1 2 months</td>
<td>7.3 ± 0.47*</td>
</tr>
<tr>
<td>Control</td>
<td>10.22 ± 0.03</td>
</tr>
<tr>
<td>G2 4 months</td>
<td>5.28 ± 0.05**</td>
</tr>
<tr>
<td>Control</td>
<td>10.27 ± 0.07</td>
</tr>
<tr>
<td>G3 6 months</td>
<td>3.62 ± 0.73***</td>
</tr>
</tbody>
</table>

(Means ± S.E)*Significant at $P<0.05$ (Values are expressed as mean ± S.E. (G n=30, Control n=10). The stars denoted that significant differences between administration).

3.3 Gross pathology finding

Enlargement in the size of liver and appear pitted after two months of administration (fig. 1). After fourth months of administration the liver appear enlarged and pale in color and pitted and appearance of white patch on the surface of liver (fig. 2). The liver after six months of administration appear pale with white patches on the surface (fig. 3).

3.4 Histopathological finding

Liver section of normal mice showed normal cellular architecture with distinct hepatic cells, sinusoidal space and central vein (fig. 4). The liver section from the mice of (G1) group showed disarrangement of hepatic cords with congestion, acute cellular swelling, dilated sinusoids with infiltrations of inflammatory cells and extension of fibrin strands (fig. 5). The section from mice of (G2) group showed fibrous tissue extend within the hepatic parenchyma, necrotic hepatocytes and hemosiderin pigment deposition (fig. 6). At 4 months administration also showed hyperplasia in bile ducts and inflammatory cells infiltrations (figure 7). The section from mice at 6 months administration showed pseudolobules and fibrous tissue encapsulate the nodules and appearance of pseudobile ducts (fig. 8).

Fig 3: Liver of mice received thioacetamide (100 mg/kg) for six months administration show white patches on the surface

Fig 4: Normal tissue (H&EX400)

Fig 5: Histopathological changes occurred in the liver treated with TAA after two months. Showed congestion, acute cellular swelling and lymphocytic cuffing around the blood vessel with extension fibrin strands (H&EX400)

Fig 6: Histopathological changes occurred in the liver treated with TAA after four months. Showed fibrous tissues extend within the hepatic parenchyma, necrotic hepatocytes and hemosiderin pigment deposition (H&EX400)

Fig 1: Liver of mice received thioacetamide (100 mg/kg) for two months administration show enlargement of liver

Fig 2: Liver of mice received thioacetamide (100 mg/kg) for four months administration show enlargement with white patch on the surface of live
AST, ALP possibly due to TAA produced free radicals which affected on the cellular permeability of hepatocytes leading to elevated levels of serum biochemical parameters. Bilirubin is the breakdown product of heme and the liver responsible for clearing bilirubin from the blood. It bind reversibly to albumin and transported to the liver where it conjugated with glucuronic acid and secreted in the bile through intestine. Anbarasu et al 2012 reported an increase in bilirubin level after administration of TAA for 21 days. The elevation possibly due to hemorrhage or differences in bilirubin excretion and metabolism and this agree with the present work. Suspected that liver and bile duct degeneration and necrosis caused destruction in bilirubin pathway causing hepatic jaundice (toxic type) because of the toxic effects of TAA on liver represented by prevent the conversion of bilirubin (lipid soluble) by Glucuronic transferase in liver to bilirubin diglucuronide (water soluble) and then accumulate in serum and tissue. Current results indicated that the pathological changes depend on severity of lesion and duration of toxicity. Present study showed macroscopically enlargement of liver after two months administration possibly due to the congestion and the cellular swelling and after four months administration show enlargement of liver with paleness possibly due to congestion and accumulation of fibrous connective tissue with in the liver parenchyma. After six month administration showed large pseudonodules, pale, firm, capsulated by white to pink fibrous tissue and visible on surface (liver cirrhosis) and this agree with. This study microscopically it showed centrilobular necrosis, fatty change in 2 month I/P injection of TAA and theses change agree with who reported fatty change and centrilobular necrosis. The mechanism behind this toxicity is associated with its toxic metabolites the s-oxide which it reduce the number of hepatocytes as well as rate of oxygen consumption and also decrease the volume of the excreted bile. Administration of TAA for six weeks showed focal inflammatory cells infiltration in the hepatic parenchyma, surrounding the central vein and portal area and proliferation of kuffer cells due to oxidative stress is the key factor for hepatic satellite cells (HSC) activation which in turn involved in the deposition of extracellular matrix, HSC differentiated in to myofibroblast like proliferate and cause fibrosis and cirrhosis.

5. Discussion

Current results were indicated significant decrease (p<0.05) in glutathione and peroxynitrate radicals concentrations which indicated oxidative effect of TAA in sera of administrated albino mice. Antioxidants are expected to protect tissue mostly liver from oxidative stress. As the TAA is responsible for the generation of reactive oxygen species (ROS), which are the main agents in charge of the cellular damage and interfere with the body’s normal defense mechanism against these compounds particularly in the liver. The reduced form GSH become readily oxidized to glutathione disulfide (GSSG) and interacting with free radicals result in oxidative stress, which lead to damage macromolecules. The present study agree with finding of as they reported decrease in GSH concentration possibly due to enhancement of ROS formation that trigger depletion in GSH-PX causing defect in the mechanism of antioxidant system to increase the production of ROS that are not sufficiently removed due to impaired antioxidant mechanism which lead to progressive organs failure due to high reactivity of ROS made it easily react with essential molecules (protein, lipid and DNA). Present results found elevation in serum ALT, AST, ALP and bilirubin. Serum liver biomarker (ALT, AST) are important criteria for evaluation of hepatic damage. The amount of enzymes leak to the blood streams indicate the severity of liver damage. The present study agree with when they recorded an increase in levels of ALT and AST in serum due to the damage in structural integrity of liver and their release to the circulation. The current study agreed with because they observed an increased level of ALT,

5. Sarkar MK, Sil PC. Hepatocytes are protected by herb Phyllanthus niruri protein isolate against thioacetamide toxicity. Pathophysiology. 2007; 14:113-120.

37. Mehul DC, Varsha GJ. Effect of polyherbal preparation on thioacetamide induced liver damage and hepatic encephalopathy in rats, international research journal of
pharmacy. 2012; 3(6).

