Review on dynamics of *Culicoides* spp. (Diptera: Ceratopogonidae) and its nuisance on body movements and milk yield in cows

PS Parihar and BW Narldkar

Abstract

Haematophagous insects involving different species of dipteran flies eg. *Culicoides* midges or *Simulium* flies or *Phlebotomus* flies or mosquitoes, causes three way trouble to livestock i.e., a) annoyance and worries and blood loss from direct biting and feeding, b) disease transmission, c) losses incurred on their production. In the livestock shed, amongst the four nematocerous flies biting throughout night and producing other ill effects *Culicoides* midges stands first. Their population is greatly higher in number than population of any other haematophagus fly species in the shed. *Culicoides* spp have great influence on livestock health due to their tiny nature and enormous number in the shed biting throughout night leading to psychological disturbances and compels them to make enumerable body movements for ward-off these midges. As per the Law of Physics, for undertaking any body movement huge energy is spent, resulting in reduction of milk yield which has been estimated to the extent of 18.97 percent. Being very dynamic misgives the economic losses from *Culicoides* are of great magnitude and thus needs attention of policy makers and entomologists.

Keywords: *Culicoides* spp, body movements, dynamics, economic losses

Introduction

It is well known fact that different species of dipteran flies eg. *Culicoides* midges or *Simulium* flies or *Phlebotomus* flies or mosquitoes are the major insect pests, causing great trouble to livestock. In the livestock shed, amongst these four nematocerous insect pests biting throughout night and producing other ill effects, *Culicoides* midges stands first. Their population is greatly higher in number than population of any other haematophagus fly species in the shed. According to Narladkar and Shivpuje [1], *Culicoides* spp have great influence on livestock health due to their tiny nature and enormous number in the shed biting throughout night leading to psychological disturbances and compels them to make enumerable body movements for ward-off these midges. As per the Law of Physics, for undertaking any body movement huge energy is spent, resulting in reduction of milk yield which has been estimated to the extent of 18.97 percent by Narladkar and Shivpuje [1]. At International level different species of *Culicoides* have been proved as the vectors of blue tongue virus [2, 3]. Bovine ephemeral fever which is very common in India is also transmitted by *Culicoides* species. These midges also transmits viruses of epizootic haemorrhagic disease, Akabane, Aino, Chuzan, Vesicular stomatitis virus, Equine Encephalitis virus (EEV), Schmallenberg virus, protozoa like *Haemoproteus* spp., *Leucocytozoon* spp., *Hepatocystis*, avian Trypanosomes, *Plasmodium* in lizard, helminths like filarial worms *Onchocerca cecilithis* in horses, *Dipetalonema* spp, *Mansonellaperstans* and *Mansonella ozzardi* in humans and various filarial worms of birds and mammals. *Culicoides impunctatus* the Scottish highland midge is a significant factor in limiting tourism in Western Scotland and has been estimated to cause losses up to 20% man hours in the forest industry [4]. *Culicoides* transmitted diseases i.e. Blue Tongue and African Horse sickness are of international significance and have been allocated OIE list ‘A’ status i.e. ‘Communicable diseases of national borders, which are of socio-economic or public health consequences and which are of major importance in the international trade of livestock and livestock products’ [5]. Therefore, present review was taken with a sole objective to highlight all such issues related to dynamics of *Culicoides* midges.
Species of Culicoides prevalent in India

Culicoides spp. midges are the important human and animal pests with great economic significance. These are the one of the world’s smallest haematophagous flies measuring from 1 to 3 mm in size. Importance of Culicoides (Diptera: Ceratopogonidae) as a livestock Pest is of high significance owing to facts that Culicoides are small midges (1-3 mm) presenting a huge diversity with more than 1300 species described worldwide [11] of which some 96% are hematophagous. Of these genera, four are known to contain species that suck the blood of vertebrates viz. Austroconops, Culicoides, Forcipomyia (subgenus Lasiohelea), and Leptoconops. More than 1400 species of genus Culicoides have been identified worldwide of which about 96% are obligate blood feeders attacking mammals (including humans) and birds and occur on virtually all large land masses with the exception of Antarctica and New Zealand, ranging from the tropics to the tundra and from sea level to 4000m [12].

In India 63 species of Culicoides were identified morphologically and their prevalence reported by many authors from Kolkata and the neighbouring areas, Assam, Bengal, Chennai (Tamil Nadu), Marathwada region of Maharashtra, Chittoor and Prakasam districts of Andhra Pradesh and Northern Karnataka region and many parts of India [7].

In India citing the works of [13-11] enumerated 28 Culicoides species in India. Of these 28 species, most of them belonged to Culicuta, whereas one species Culicoides pattoni was collected from Calcutta, Assam/Puri. Sen and Fletcher [11] also reported the species of Culicoides oxystoma from Bombay Veterinary College. Sen and Dasgupta [12] reported 31 Culicoides species and one variety, while Dasgupta [13, 14] and added few more species from Calcutta. Of these 31 species, C. pattoni and Culicoides indiansus were reported from Coimbatore and Dharwar (Sen and Dasgupta) [12], Culicoides alatus from Pune Dasgupta and Ghosh [1961] and three species, i.e., Culicoides fulves, Culicoides clavipalpis and Culicoides similis were reported from Madras [15], from India total of around 50 species and one variety are documented. These include C. actoni, Culicoides autumnalis, C. alatus, Culicoides albipennis, Culicoides anophelis, Culicoides bimaculicosta, Culicoides brevimanus, Culicoides certus, C. clavipalpis, Culicoides candidus, Culicoides daleki, Culicoides dumhani, Culicoides distinctus, Culicoides definitus, Culicoides fortis, C. fulvus, Culicoides fulvithorax, Culicoides himalayae, Culicoides innoxius, Culicoides inquis, C. indanus, Culicoides imperpectus, Culicoidesinesexploratus, Culicoides kamrupi, Culicoides macrostoma, Culicoides macfiei, Culicoides molestus, Culicoides minutus, Culicoides magnificus, Culicoides nitidulus, C. oxystoma, Culicoides orientalis, Culicoides odiosus, Culicoides opacus, C. peregrinus, Culicoides palpiker, Culicoides paivai, Culicoides pictiventris, Culicoides pseudoturgidus, Culicoides paralini, C. pattoni, Culicoides quadrilibatus, Culicoides raripalpis, C. schlutzei, Culicoides shorti, C. similis, Culicoides setiger, Culicoides scapularis, Culicoides superfulvus and Culicoidesesturgidus and one variety as C. peregrinus var. assamensis. From Darjeeling region of India [16] reported Culicoides spinulosus and Culicoides majorinus species. Culicoides species reported in the literature from Maharashrta state predominantly belonging to three species namely Culicoides peregrinus Kieffer, 1910, Culicoides schlutzei Enderlein, 1908 and Culicoides actoni Smith, 1929 [17], Udupa [18] and Bhoyar et al. [19] did the work on various aspects of species of Culicoides at Chennai and Bidar, respectively. Archana et al. [17] studied different species of Culicoides in Bangalore rural and urban districts of South India. Flies were collected with UV-light traps during rainy season. The fly species reported were Culicoides imicola, C. oxystoma, C. peregrinus, C. actoni, C. anopheles, C. palpiker, C. huffi, C. innoxius, C. arakawae and C. circumscripturn.

<table>
<thead>
<tr>
<th>Country</th>
<th>Author</th>
<th>Species of Culicoides responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>America</td>
<td>[20]</td>
<td>Sixteen species of Culicoides from Gold coast area providing distinguishing characters and keys to identify the males and females of 17 species of Culicoides.</td>
</tr>
<tr>
<td>America</td>
<td>[21]</td>
<td>ceratopogonids of the genus Lasiohelea</td>
</tr>
<tr>
<td>America</td>
<td>[22]</td>
<td>Culicoides actoni and C. raripalpis</td>
</tr>
<tr>
<td>America</td>
<td>[23]</td>
<td>C. Insignisand C. varipennis</td>
</tr>
<tr>
<td>Africa</td>
<td>[25]</td>
<td>16 Culicoides species from Karoo region of South Africa of which C. pynosicitus was the most predominant</td>
</tr>
<tr>
<td>Europe</td>
<td>[29]</td>
<td>C. kingi and C. Imicola were most predominant. C. schlutzei and C. Obsoletus</td>
</tr>
<tr>
<td>Europe</td>
<td>[30]</td>
<td>20 species of Culicoides from Mainland</td>
</tr>
<tr>
<td>Italy</td>
<td>[31]</td>
<td>C. paule</td>
</tr>
<tr>
<td>Spain and Portugal</td>
<td>[32]</td>
<td>21 species of Culicoides</td>
</tr>
<tr>
<td>China</td>
<td>[35]</td>
<td>documentation of 78 species of Culicoides</td>
</tr>
<tr>
<td>China</td>
<td>[36]</td>
<td>C. oxystoma and C. homotomus</td>
</tr>
<tr>
<td>China</td>
<td>[37]</td>
<td>C. desytoculus, C. pulchellus, C. gymnopterus, C. parabarnetti, C. pikongkoi</td>
</tr>
<tr>
<td>China</td>
<td>[38]</td>
<td>C. arakawae, C. schlutzei, C. amaniensis(C. sumatrae), C. okamensis(C. actoni), C. erairui, C. palpiker among which</td>
</tr>
</tbody>
</table>
Population dynamics and metrological factors responsible
It is evident from the literature that the population dynamics of *Culicoides* midges varies from place to place and country to country and is solely dependent on the climatic factors. Due to variation in climatic factors, calendar months of a particular season differ in different continents of the world. In view of this fact the literature on seasonal abundance of *Culicoides* spp. in different countries are documented.

<table>
<thead>
<tr>
<th>Country</th>
<th>Author</th>
<th>Meteorological factor responsible for dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>[52]</td>
<td>Wind force and rainfall were believed to be important factors influencing the populations of Culicoides.</td>
</tr>
<tr>
<td>Nan Kang</td>
<td>[53]</td>
<td>Climatic factors especially temperature and precipitation and observed population peak of all species in the region in the month of May.</td>
</tr>
<tr>
<td>USSR</td>
<td>[54]</td>
<td>phenology and seasonal course of blood sucking midges of the genus Culicoides in the Western Pamir USSR</td>
</tr>
<tr>
<td>Southeast</td>
<td>[25]</td>
<td>population of Culicoides was dependent on windspeed, temperature, vapour pressure and sunlight</td>
</tr>
<tr>
<td>South Africa</td>
<td>[26]</td>
<td>season and rainfall greatly influenced the population of Culicoides species</td>
</tr>
<tr>
<td>Taiwan</td>
<td>[55]</td>
<td>that Culicoides population in central was significantly influenced by temperature and rainfall</td>
</tr>
<tr>
<td>New York</td>
<td>[56]</td>
<td>population size tended to increase through season and was highest in July and August which coincided with the emergence of adults from overwintered 3rd and 4th instar larvae</td>
</tr>
<tr>
<td>USA</td>
<td>[24]</td>
<td>Population of Culicoides insignis persisted throughout the year in Florida USA except during cold winter months.</td>
</tr>
<tr>
<td>Israel</td>
<td>[57]</td>
<td>Observed that C. imicola showed peak populations from mid-summer to onset of winter which was peak season of Blue Tongue disease occurrence.</td>
</tr>
<tr>
<td>Georgia</td>
<td>[58]</td>
<td>Noted that C. hollensis and C. melleus were abundant during winter and summer and correlated with the bimodal spring-autumn seasonal abundance of these two species</td>
</tr>
<tr>
<td>Paris</td>
<td>[59]</td>
<td>Culicoides could grow in the temperature range of 10 to 35\textdegree C and they required adequate moisture. Movement of the Culicoides was found to be affected by mainly wind. Lastly author has highlighted two important factors in the Culicoides ecology i.e. temperature and wind.</td>
</tr>
<tr>
<td>India</td>
<td>[60]</td>
<td>Seasonal abundance of three Culicoides species i.e. C. schultzei, P. peregrinus and A. actoni from Marathwada region of India. During monsoon season with second peak during winter, while during summer the depression in Culicoides population occurs (peak during September and second peak in January, while lowest population during December and May).</td>
</tr>
</tbody>
</table>

Losses estimated
It is well known fact that different species of *Culicoides* midges causes trouble to livestock by several ways such as a) blood feeding, b) psychological disturbances, c) allergy, and d) disease transmission all leading to economic losses from livestock. These facts have been reported through observations by scientists across the globe.

<table>
<thead>
<tr>
<th>Country</th>
<th>Author</th>
<th>Losses estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>[6]</td>
<td>Transmission of Bovine ephemeral fever (Loss of draught work), Blue Tongue outbreaks results in six million US dollar loss</td>
</tr>
<tr>
<td>Scotland</td>
<td>[4]</td>
<td>hampering agricultural and forestry activities, as well as tourism development</td>
</tr>
<tr>
<td>India</td>
<td>[1]</td>
<td>Culicoides midges causes psychological disturbances and body movements forward-off these midges, as a results energy spent in movements results in reduction of milk yield to the extent of 18.97 percent.</td>
</tr>
</tbody>
</table>

Narladkar (2018) based on the estimates mentioned in the literature worked out the projected economic losses from *Culicoides* midges in terms of milk loss as detailed in the below
Conclusions
From the present review article conclusions can be drawn that a) *Culicoides* species midges are the pests of livestock importance world-wide, b) their nuisance to livestock results in heavy economic losses they being, blood suckers, causing body movements as a result of their painful bites in enormous numbers which resulting in milk loss to the extent of 18.97%, c) potent vectors for viral and helminthic diseases, and d) owing to all these facts needs attention for their control.

References
21. Smith RO Two species of *Culicoides* which fed on man. The Indian Journal of Medical Research. 1929; 17:255-257.
24. Campbell MM, Kettle DS. Abundance, temporal and spatial distribution of *Culicoides brevitarsis* Kieff (Diptera: Ceratopogonidae) on cattle in South East
In 2014 -

Africa with some observations on

Journal of Entomology and Zoology Studies

new records of the genus

Liu

symposium, Greenlake Hotel, Kunming, P.R., China, 22

The first Southeast Asia and Pacific regional Blue tongue

disease in Southeast Asia and the Pacific : Proceedings of

Weihan Z

Culicoides

Asia and Pacific regional Blue tongue symposium, \(C. \) in Indonesia.

Parazitologiia

Caspian Sea region (Mangyshlak).

Culicoides imicola

1997; 11(3):203-212.

and its potential Culicoides vector in Morocco. Medical and Veterinary Entomology.

Culicoides

34.

Culicoides

Culicoides

35.

Culicoides

Parazitarnye

46.

Culicoides

1995; 29(9):12

1979; 47:1-6

Nevill EM. A survey of the

Venter GJ

Veterinary Record.

Genyuan

1999; 1:31-

Miranda M, Borras D, Rincon C, Alemany A. Presence in

Balearic islands (spain) of the midges Culicoides obsoletus group. Medical and Veterinary Entomology.

2012; 50:127-131

Becker E, Gert J, Venter Karien LT, Greyling Huib. Occurrence of Culicoides species (Diptera: Culicopodinae) in the Khomas region of Namibia during the Khomas region of Namibia during the winter months. in Veterinaritaitaliana. 2012; 48(1):45-54

Carvalho L, Silva FS. Seasonal abundance of livestock-associated Culicoides. www.plosone.org

Baylis M El-Hasnaoui HBouayyone H Touti J Mellor PS. The spatial and seasonal distribution of African horse sickness and its potential Culicoides vector in Morocco. Medical and Veterinary Entomology. 1997; 11(3):203-

Miranda M, Borras D, Rincon C, Alemany A. Presence in

Balearic islands (spain) of the midges Culicoides obsoletus group. Medical and Veterinary Entomology.

2013; 17:52-54.

Becker E, Gert J, Venter Karien LT, Greyling Huib. Occurrence of Culicoides species (Diptera: Culicopodinae) in the Khomas region of Namibia during the Khomas region of Namibia during the winter months. in Veterinaritaitaliana. 2012; 48(1):45-54

Carvalho L, Silva FS. Seasonal abundance of livestock-associated Culicoides. www.plosone.org

