Histological alterations in the salivary gland of semi engorged females of *Ornithodoros savignyi* (Acari: Argasidae) induced by Eucalyptus oil nanoemulsion

Shimaa S Ahmed, Ola H Zyaan, Shaimaa A Moamen and Shireen AM Maamoun

Abstract

The present study aimed to demonstrate the effects of eucalyptus oil nanoemulsion on the *Ornithodoros savignyi* semi engorged females. For this purpose, the semi engorged females of *O. savignyi* were exposed to eight serial dilutions of oil nanoemulsion (5, 10, 15, 20, 25, 30, 35, and 40%) using a “dipping method” in vitro. The semi engorged ticks were immersed in different dilutions (5 replicates per dilution) for 2 min then each replicate was incubated in separate vial at 27°C±1, 75% relative humidity. The mortality percentage for adult ticks exposed to different dilutions of eucalyptus oil nanoemulsion showed a concentration-dependent effect. It was however not significant only for the 5% when compared to the non-treated ticks (*P* < 0.05). While, it was significant for other dilutions (*P* < 0.05). The highest mortality was reported for ticks treated with 40%. The LC50 obtained from bioassay test was 25%. Salivary glands were dissected and evaluated through morphological techniques using light and scanning microscopy. Results showed that eucalyptus oil nanoemulsion is an effective substance that acts morpho-physiologically on the tick glandular tissue, causing changes in the acini shape, vacuolation in acinar cells, and disruption of the tissue by cell death process with subsequent formation of apoptotic bodies, thus preventing the accurate identification of different types of acini. These results confirmed the potential of eucalyptus oil nanoemulsion as an alternative method for controlling *Ornithodoros savignyi* ticks, instead of synthetic acaricides.

Keywords: *Ornithodoros savignyi*; salivary gland; eucalyptus oil nanoemulsion

1. Introduction

The sand tampan (*Ornithodoros savignyi*) is grouped within the family Argasidae (soft ticks). They occur all over the northeastern parts of South Africa and is also found in the semi-desert areas of both North and East Africa, India, the Middle East and Ceylon [1]. Tampans were found to cause the death of domestic animals through excessive blood-loss in addition to the toxic component in the tick salivary gland secretions [2]. According to Moorhouse and Tatchell [3] saliva produced by the salivary glands is considered the primary agent through which the micro-organisms enter the host’s bloodstream. Salivary gland structure and biology of ticks have been described in several reviews [4-8]. The histological, histochemical and ultrastructural studies of argasid salivary glands showed that at least three granular cell types existed [9, 10]. The granules of these cell types varied in electron density and submicroscopic appearance. Cell types ‘a’ and ‘b’ contain granules of variable electron density, while cell type ‘c’ contains granules with an electron compact core. Ultrastructural studies on *Ornithodoros moubata* showed similar granule types [11]. The description of El Shoura [11] will be used in this study, as *O. moubata* is the relatively closest to *Ornithodoros savignyi* and no equivalent have been found for the ‘c’ cell granules of *O. moubata* in Argas ticks.

Chemical acaricides have been broadly used and still the main method to control ticks. However, the development of tick resistance to the different active ingredients of these chemicals is mainly due to the unwise use of chemicals [12]. Furthermore, the products are of high cost, chemical residues in the environment; contamination of the soils, rivers and animals, all affecting human health [13-17]. The use of bio acaricides, such as plant-borne products containing acaricidal compounds, have been suggested by Castrejon [18] and Pavela *et al.* [19], as
an alternative to eliminate the environmental and economic impacts of synthetic acaricides. Biopesticides as essential oils (EO), appear to be a balancing method for integrated pest management [20-23]. EO contain mixtures of bioactive compounds, such as alcohols, aldehydes, ketones, esters, aromatic phenols, and lactones also monoterpene sesquiterpenes [24]. Despite EO promising properties, difficulties related with EO volatility, their poor solubility in water, and tendency to oxidation should be solved before they can be used as an alternative in pest control system [25].

Nanoformulation of the EO may resolve these problems, protecting EO from degradation and losses by evaporation, achieving a controlled release of EO and easy handling [26]. A nano insecticide is a formulation that designedly consists of elements that are in a nanometer size range and gain new characteristics related with this small size range [27]. Some advantages of nanoformulations are: improvement in the efficiency due to increasing the exposed surface area, higher solubility in water, inducement of systemic activity due to smaller particle size, higher mobility and lower toxicity due to the elimination of organic solvents compared to conventional pesticides, and their formulations [27, 28]. Nanotechnology was utilized to develop new nanopesticides hires nanoparticles (NP) which claim one or more dimensions in the order 10 – 1,000 nm [29].

Therefore, this study gets benefit from the current knowledge about herbal preparations and nanoparticles to control the soft tick, Ornithodoros savignyi. Here we focused on the effect of eucalyptus oil nanoemulsion on the morphology and histology of salivary gland tissue of semi engorged female Ornithodoros savignyi.

2. Materials and Methods

2.1 Ticks rearing
The soft tick, Ornithodoros savignyi (Audouin, Argasidae), were collected from sand near cattle rearing places in Dahshore, Giza governorate, Egypt. To establish a laboratory colony, ticks were maintained at 27 ± 1 °C, 75% RH and 16 hrs day light. The ticks were held in transparent polyethylene tubes (25 × 100 or 13 × 100 mm) which were sealed at one end by a mixture of gypsum and graphite at a ratio of 1:5. The tubes were covered at the other end with muslin cloth securely held by rubber bands [30]. Ticks colony was maintained in an insectary provided by Department of Entomology, Ain Shams University, New Zealand white rabbits from the commercial breeder in Cairo were kept in an animal room provided by Research and Training Center on Vectors of Diseases (RTC), for feeding the ticks. The basic principle for animal experimentation is considered and the study is organized and operated according to the CIOMS (Council for International Organizations of Medical Sciences) and ICLAS (International Council for Laboratory Animal Science).

2.2 Preparation of eucalyptus oil nanoemulsion
The nanoemulsion was formulated using eucalyptus oil, water and non-ionic surfactant (tween 80). At first, coarse emulsion was set up by adding water to organic phase containing oil and surfactant using a magnetic stirrer, which was then subjected to 20 kHz Sonicator for ultrasonic emulsification [31]. Energy input was given through sonotrode containing a piezoelectric crystal with a probe diameter of 13mm. Coarse emulsion is converted to nanoemulsion by the sonicator probe which generates disruptive forces that reduce the droplet diameter to form the stock solution. Different concentrations were prepared from the stock solution.

2.3 Characterization of eucalyptus oil nanoemulsion
The nanoemulsion formulation was centrifuged at 3000 rpm for 30 min and observed for phase separation. Samples were further analyzed.

a) Heating–cooling cycle
The formulated nanoemulsion was kept between 40 °C and 4 °C, alternating each temperature for 48h. The cycle was repeated three times. The stability of nanoemulsion at varying temperature was checked.

b) Freeze–thaw stress
The formulated nanoemulsion was kept between -21°C and 25 °C for 48h alternatively at each temperature. This cycle was repeated two times. The formulations which passed the thermodynamic stress tests were chosen for additional characterization studies.

2.3.1 Droplet size distribution and polydispersity index
The droplet size distribution and polydispersity index of eucalyptus oil nanoemulsion formulation was determined using particle size analyzer. Polydispersity index values below 0.2 indicate a narrow size distribution and thus ensure long-term stability of the formulated nanoemulsion.

2.3.2 Morphology of emulsion droplets
The shape and morphology of the formulated eucalyptus oil nanoemulsions were visualized using Transmission electron microscopy (TEM). A drop of the emulsion was stained negatively with phosphotungstic acid and was positioned on a copper grid. The TEM micrographs were acquired using a transmission electron microscope with a tungsten source and operating at 80kV.

2.4 Bioassay test
Semi engorged females of Ornithodoros savignyi were subjected to different eucalyptus oil nanoemulsion concentrations through adult immersion test. Briefly, the semi engorged females were washed in a small sieve with tap water then were dried on soft absorbent paper. After that, 200 females were divided into eight groups (25 females each). They were immersed in Petri dishes containing different concentrations (10, 15, 20, 25, 30, 35, and 40%) of eucalyptus oil nanoemulsion for 2 min (each concentration had five replicates). The control group was also consisted of 25 semi engorged females that had been dipped in distilled water only for 2 min. Ticks were dried in the absorbent paper then were placed in an incubator at 27 °C and 75% relative humidity. The observations of oils effects on tick mortality were recorded 24 h post-application. Death of ticks was confirmed by observing loss of mobility. The number of dead females was recorded and the percentage of mortality of females was estimated in the average of the five replicates. Mortality data was used to estimate probit regression line and calculate LC50.

2.5 Scanning Electron Microscopy
The salivary glands of semi- engorged females of Ornithodoros savignyi from normal and treated group were removed and fixed at 3% glutaraldehyde for 24h and dehydrated in a graded 70-100% acetone series. The material was processed by critical point drying, sputtered with gold and examined by Jeol100cx at 25KV.
2.6 Histological study
Semi-engorged females from normal and treated groups were dissected on Petri dishes containing phosphate buffered saline-PBS (NaCl 0.13M, NaHPO₄ 0.017M, KH₂PO₄ 0.02M, PH 7.2), and salivary glands removed immersed in 3% glutaraldehyde then transferred to initial fixative. They were fixed overnight and given 3 brief rinses in a sucrose-cacodylate buffer (pH 7.2); post fixed 1 hr in 1% osmium tetroxide in 0.1M cacodylate buffer, rinsed 3 times in distilled water, and dehydrated through a graded series of ethanol. Then specimens were infiltrated with Spurr’s epoxy resin in a graded series of absolute alcohol-Spurr’s resin mixtures, then embedded in freshly prepared Spurr’s resin at 70°C for 72 hrs. Semithin sections 5-6μm were stained with toluidine blue. Specimens were examined and photographed by equipped Leica light microscope with a camera using objective lens 40X with 50 μm scales.

2.7 Statistical Analysis
The obtained data were subjected to analysis of variance (ANOVA) followed by post-hoc analysis (Tukey’s HSD test) with the help of SPSS version19 for Windows, in which the equation of the standard deviation, standard errors, and probabilities (p) were used. The level of significance was expressed as significant (P<0.05) and non – significant (p > 0.05).

3. Results
3.1 Characterization of eucalyptus oil nanoemulsion
The formulated nanoemulsion was prepared using eucalyptus oil and Tween 80 (organic phase) and water (aqueous phase). The formulated nanoemulsion was noticed to be stable after being exposed to centrifugation for 30 minutes at 3,000 rpm. Also, it was more stable when stored at different temperatures (4 °C, -21 °C, 25 °C and 40 °C). The average diameter of nanoemulsions is ranged from 10 to 12.2 nm. The polydispersity index of the nanoemulsions is 0.060 which indicates that it is uniform. The particles are presented in a transmission electron microscope image. According to TEM evaluation, the average particle size is 10.63±0.53 nm and the droplets are spherical in shape (Figure 1).

![Figure 1: Transmission electronic microscopy image of eucalyptus oil nanoemulsion](image)

3.2 Bioassay test
The results of the bioassay experiment show no mortality and no changes in behaviour of Ornithodoros savignyi adult females of the control group. However, at the concentration of 5%, mortality is observed soon after the onset of treatment of individuals. At the concentrations from 10 to 40, a progressive increase in mortality is observed throughout the observation period as shown in Table 1.

<table>
<thead>
<tr>
<th>Eucalyptus oil nanoemulsion (%)</th>
<th>Average Mortality (%) ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (water)</td>
<td>0 ± 0 a</td>
</tr>
<tr>
<td>5</td>
<td>4 ± 4 b</td>
</tr>
<tr>
<td>10</td>
<td>12 ± 4.89 b</td>
</tr>
<tr>
<td>15</td>
<td>20 ± 0 c</td>
</tr>
<tr>
<td>20</td>
<td>28 ± 4.89 d</td>
</tr>
<tr>
<td>25</td>
<td>36 ± 8 e</td>
</tr>
<tr>
<td>30</td>
<td>52 ± 4.89 f</td>
</tr>
<tr>
<td>35</td>
<td>76 ± 7.48 f</td>
</tr>
<tr>
<td>40</td>
<td>96 ± 4 f</td>
</tr>
</tbody>
</table>

*Data are presented as mean ± SE
*Means bearing different letters within column are significantly different (P<0.05) ANOVA, Tukey’s HSD test.

Table 2: Results obtained by Probit analysis—Bioassay test.

<table>
<thead>
<tr>
<th>LC50: 24.966% limits = 18.5913 - 35.4991%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope: 3.49</td>
</tr>
<tr>
<td>Chi-value: calculated = 15.0457 tabulated = 12.6</td>
</tr>
<tr>
<td>r-value: calculated = 0.8914 tabulated = 0.707</td>
</tr>
</tbody>
</table>

3.3 Scanning Electron Microscopy (SEM)
The salivary glands of Ornithodoros savignyi consist of a pair of grape-like clusters of acini (alveoli), surrounded by a myo-epithelial sheath (Figure 2A). They comprise 2 major types of acini the agranular and granular acini. The salivary glands surround a pair of salivary ducts, extending along the basis capituli and opening into the salivarium. Away from this main structure, intermediate or secondary branches of smaller size and diameter ducts, canaliculi or acinar ducts, which are distributed and extended along the length of the gland. Saliva flows through these ducts into the host’s bloodstream allowing successful feeding (Figure 2A.C).

In female Ornithodoros savignyi treated with LC50 of 25% eucalyptus oil nanoemulsion, salivary glands lost their regular shape and compatibility with myo- epithelial sheath. Acini became smaller in size, loose and irregular, great parts of acini were detached from their sheath, in other parts acini and acini sheath were ruptured making clear holes in the epithelial sheath and some parts of the gland completely disappeared or deleted leaving an empty sac-like structure. Salivary ducts become narrower and showed gradual decrease in diameter along the same duct, some ducts appeared with no distinct ends, others were also disappeared. (Figure 2D,F).
3.4 Histology

Histological examination of salivary glands in control group revealed that it consists of two types of acini: Acini I, which are agranular, with large central cell and strongly stained nucleus (Figure 3B). Acini II (granular) are oval to spherical in shape and size. Acini I show wrinkled surface (Figure 3B). Acini II (granular) are oval to spherical and are formed of a, b and c cells (Figure 3A, C). Cell type ‘a’ contains dense core granules these cells are released during feeding. Type ‘b’ cells contain homogenous granules. Type ‘c’ cells contain smaller granules. The different cell types of salivary gland acini (I, II) of Ornithodoros savignyi were already described by El shoura [11] in Ornithodoros moubata. In the present study, individuals of the control group were used only as reference to demonstrate the changes caused in the salivary glands by tested compound.

Female ticks exposed to LC50 of 25% eucalyptus oil nanoemulsion showed acini with great histological alterations. Acini I showed dilated lumen (Figure 3E). Acini II showed irregular shape of granular secretion, change in outline of the acini, intense vacuolation, acini identification still impossible (indeterminate) (Figure 3D, F). Secretion granules were rarely observed in indeterminate acini cells or have irregular shape (Figure 3D, F). Numerous apoptotic bodies is formed due to degeneration process in salivary glands (Figure 3D).

4. Discussion

Ticks are promising hematophagous living beings that control the hemostatic and immune systems of hosts they attacked, by emitting bioactive components during feeding [32]. These components are put away in salivary gland granules until a stimulus prompts secretion. The salivary glands are additionally the main transmission route for pathogenic agents [1]. The present study is targeting the female soft tick, Ornithodoros savignyi. It is known that when female ticks are incapable of completing their feeding process, vitellogenesis is corrupted, so that, the egg-laying processes depend indirectly on salivary gland activity [33].

In the previous years, the best technique to control ticks was utilization of manufactured acaricides [34, 35]. However, these chemicals prompted the improvement of resistance in targeted vector and increase residues in the environment. Moreover, these acaricides are harmful to animals and humans [56, 37], thus, instilling the need for finding alternative ways to control ticks. The plant-based pesticides are in great demand, because, they are sustainable in the environment; they are pleasant to use and are also safe [38]. The utilization of essential oils is being progressively considered for pest control as they are generally seen to be less toxic to humans, animals and the environment than manufactured neurotoxic insecticides [39]. An issue that emerges with the utilization of essential oils as pesticides is that their effect is short enduring [40]. It additionally has technological obstacles, such as, reactivity, volatility, and hydrophobicity of the bioactive constituent part of the essential oils [41]. Other issues related to their instability, poor
water solubility and aptitude for oxidation have to be settled before they are utilized as an alternative pest control management [25]. The EO compounds may enter through the insect cuticle, in a comparable way to ordinary insecticides, yet because of their exceedingly lipophilic composition, passage into the hemolymph may be moderate and constrained [42]. Isman et al. [53] pointed out that a principal disadvantage of EO used as pesticides is their lack of persistence, which requires two or more applications to exert a satisfactory administration of pests.

These issues may be overwhelmed by formulating Essential oils (EO) into nanoemulsion [44]. The emulsions that have droplets which are very small with size extending from 10 to 200 nm are called nanoemulsions. The technique of preparation determines the stability of the formulated nanoemulsion. Eucalyptus oil nanoemulsion was prepared with Tween 80 as a surfactant and water as the aqueous phase. The nanoemulsions are formed when the oil phase is scattered in an aqueous phase and it is stabilized due to the presence of surfactant that forms a layer at the interface of the droplet, in this manner, isolating the oil from aqueous phase owing to the stability of emulsion [45-47].

Eucalyptus oil nanoemulsion was characterized for size and stability, and the droplet size ranged from 10 to 17 nm, which is proved to be potent larvicidal and antibacterial activity [31, 48]. The stabilization of nanoemulsion would be due to the non-ionic surfactant, which reduces interfacial free energy and provides a steric barrier against coalescence [49]. The resultant nanoemulsion was homogenous, optically transparent and exhibited no birefringence and shows a hydrophilic nature. The formulated nanoemulsion was noticed to be stable after being exposed to centrifugation and when stored at different temperatures. The attractive forces among the droplets when its size is in the nano range are weak, accordingly, preventing particle aggregation and helps in making the nanoemulsions extra stable [45, 46]. At present, the nanoformulation pesticide aims toward est 

stabilization of nanoemulsion would be due to the presence of surfactant that forms a layer at the interface of the droplet, in this manner, isolating the oil from aqueous phase owing to the stability of emulsion [45-47].

Eucalyptus oil nanoemulsion was characterized for size and stability, and the droplet size ranged from 10 to 17 nm, which is proved to be potent larvicidal and antibacterial activity [31, 48]. The stabilization of nanoemulsion would be due to the non-ionic surfactant, which reduces interfacial free energy and provides a steric barrier against coalescence [49]. The resultant nanoemulsion was homogenous, optically transparent and exhibited no birefringence and shows a hydrophilic nature. The formulated nanoemulsion was noticed to be stable after being exposed to centrifugation and when stored at different temperatures. The attractive forces among the droplets when its size is in the nano range are weak, accordingly, preventing particle aggregation and helps in making the nanoemulsions extra stable [45, 46]. At present, the nanoformulation pesticide aims toward est 

stabilization of nanoemulsion would be due to the presence of surfactant that forms a layer at the interface of the droplet, in this manner, isolating the oil from aqueous phase owing to the stability of emulsion [45-47].

Eucalyptus oil nanoemulsion was characterized for size and stability, and the droplet size ranged from 10 to 17 nm, which is proved to be potent larvicidal and antibacterial activity [31, 48]. The stabilization of nanoemulsion would be due to the non-ionic surfactant, which reduces interfacial free energy and provides a steric barrier against coalescence [49]. The resultant nanoemulsion was homogenous, optically transparent and exhibited no birefringence and shows a hydrophilic nature. The formulated nanoemulsion was noticed to be stable after being exposed to centrifugation and when stored at different temperatures. The attractive forces among the droplets when its size is in the nano range are weak, accordingly, preventing particle aggregation and helps in making the nanoemulsions extra stable [45, 46]. At present, the nanoformulation pesticide aims toward est 

stabilization of nanoemulsion would be due to the presence of surfactant that forms a layer at the interface of the droplet, in this manner, isolating the oil from aqueous phase owing to the stability of emulsion [45-47].

5. References


4. Kemp DH, Stone BF, Binnington KC. Tick attachment and feeding: role of the mouthparts, feeding apparatus,


