Does host stage affect the morphometry of *Aenasius arizonensis* (Girault), a solitary endoparasitoid of *Phenacoccus solenopsis* Tinsley?

Prasun Karmakar and PS Shera

Abstract

We investigated the influence of three nymphal instars (1st, 2nd and 3rd) and adult stages of *Phenacoccus solenopsis* Tinsley on the morphometric parameters of *Aenasius arizonensis* (Girault). The study was conducted to identify the suitable host stages for quality improvement in mass production of *A. arizonensis* for biocontrol program against *P. solenopsis*. The female parasitoid parasitized all the stages of *P. solenopsis* except 1st instar nymphs, while the parasitism of 2nd instar nymphs yielded only males in the progeny. The length and breadth of parasitoid mummies (pupae); body size, antenna length, the length of fore-leg, middle-leg and hind-leg, and wing size of both male and female adults increased significantly with an advancement of host stage. The measurements through Scanning Electron Microscopy images also confirmed that the length of hind-leg increased with increase in host stage. The results of this study have implications for utilizing adult and 3rd instar nymphal stages in mass production *A. arizonensis* for larger sized progeny and devising an effective biological control strategy against *P. solenopsis*.

Keywords: *Phenacoccus solenopsis*, *Aenasius arizonensis*, morphometry, parasitism, scanning electron microscopy, progeny

1. **Introduction**

Mealybugs (Hemiptera: Pseudococcidae) with 1,970 species in 271 genera worldwide form the second largest family of the scale insects [5]. Over the past decade, *Phenacoccus solenopsis* Tinsley, an exotic mealy bug species have come forth as a dangerous threat to cotton cultivation in India [27]. During 2007, this mealy bug pest caused up to 30 to 40 percent loss in the yield of cotton in Punjab, India [12]. *P. solenopsis* is a polyphagous pest and has a wide morphological diversity, biological adaptations and ecological adaptations that allow it to feed on diverse host plants, including plant species of economic importance [11, 27]. Due to waxy material covering the mealy bug body and high rate of proliferation, it is difficult to manage this pest with insecticides.

Aenasius arizonensis (Girault) (Hymenoptera: Encyrtidae), a solitary nymphal and adult endoparasitoid has been identified as a key mortality factor of *P. solenopsis* under field conditions. It has been observed to be only ecological and fundamental host of *A. arizonensis* [37]. The parasitoid has neither been imported purposefully nor released artificially and is a classic example of fortuitous biological control in India [14, 30]. Field parasitism by *A. arizonensis* to an extent of 95 per cent has been reported in *P. solenopsis* [23, 31]. It can be qualified as an important biological control agent of *P. solenopsis* due to its salient attributes like adaptability to the environmental conditions, high host searching efficiency, high dispersal capacity, amenable to easy culturing in the laboratory, faster multiplication than the host, high female: male ratio in progeny and a synchronized life cycle with its host [28].

Mass production procedures in biological control programmes primarily emphasize on the generation of parasitoid adults possessing high fitness levels. Recognition of the key factors contributing to parasitoid’s fitness holds relevance towards improving its performance under field conditions. Body size is an important index of fitness or quality in parasitoid’s [20, 33]. Enhanced reproductive fitness viz., host searching efficiency, reproductive longevity, daily fecundity and female-biased progeny sex ratio is attributable to larger body size in parasitoid’s [20, 21, 33, 35]. A larger body size is advantageous for the reproductive fitness of female parasitoids due to the allocation of more resources to reproduction and efficient management of sperm transferred by males [32, 38].
Larger sized individuals also represent higher quality mates in parasitoids [7]. Moreover, the body size of mass-reared parasitoids correlates with their performance under field conditions [40].

Knowledge on the morphometry of A. arizonensis is an important prerequisite to optimize the mass production of high fitness parasitoids for their use in biological control programmes [53]. Most of the studies by earlier workers have documented morphometric parameters of A. arizonensis irrespective of host stage [2, 34]. Few studies have published the comparison of parasitoid adults emerged from different host stages on the basis of hind tibial length only [4, 13, 41]. The comprehensive information about whether and to what extent different host stages affects morphometry of this solitary endoparasitoid is still lacking. Moreover, the precise morphometric measurements through Scanning Electron Microscopy (SEM) have been documented for the first time. The information generated could be useful in improving the quality of this parasitoid in mass rearing system and implementing effective strategies for augmentative releases of quality individuals in biological control programmes against P. solenopsis.

2. Materials and methods

2.1 Rearing of P. solenopsis

The culture of P. solenopsis was maintained on sprouted potatoes (Solanum tuberosum L.) for multiple generations in an environmental chamber at 27 ± 2 °C, 70 ± 5 % relative humidity and under a 14L: 10D photoperiod according to the procedures outlined by Nagrare et al. (2011) [28]. Potato sprouts of length 2.5-5 cm were placed in glass jars (20 x 15 cm) and inoculated with gravid females using a soft camel hair brush. The moist soil was kept at the base of each jar to maintain the turgidity of inoculated potato sprouts. The jars were covered with muslin for the establishment of mealybug colonies. The culture of P. solenopsis thus maintained was further used for rearing of A. arizonensis.

2.2 Rearing of A. arizonensis

Stock culture of A. arizonensis was maintained on the P. solenopsis at 27 ± 2 °C, 70 ± 5 % relative humidity and under a 14L: 10D photoperiod. Field collected parasitized mealybugs (mummies) were obtained from P. solenopsis infested cotton, Hibiscus sp. and weed hosts (Abutilon sp., Sida sp. and Parthenium sp.) and kept in glass vials plugged with cotton wool. The naive parasitoid adults obtained from mealy bug mummies were sexed [40] and were released in glass jars having healthy colonies of mealy bug maintained on sprouted potatoes. After parasitism, the mummies were collected and kept in glass vials plugged with cotton wool. Honey streak on a paper strip was utilized as a source of food for the emerging adult parasitoids in glass vials. The newly emerged A. arizonensis adults were employed for further experiments.

We allowed 2-day old mated female of A. arizonensis to parasitize the three nymphal instars (1st, 2nd and 3rd) and adult stages of P. solenopsis at parasitoid: host ratio of 1: 10 kept separately in glass jars (20 x 15 cm) covered with muslin. A cotton swab dipped in 10 percent honey solution was hung in each jar as a source of food for A. arizonensis adults. Five replicates of each treatment were maintained. The mealy bugs were inspected daily for mummy formation. Fifty randomly selected mummified Puparium of each host stage were collected from stock cultures and kept separately in glass vials (4 x 3 cm) prior to adult emergence for morphometric observations. The parasitoid adults, thus emerged from different host stages of P. solenopsis were killed by refrigeration and then used for further morphometric studies.

2.3 Measurement of A. arizonensis mummies and adults

The present studies on morphometry of A. arizonensis were conducted at Aesarology laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana during 2015. The morphometric parameters of mummies and A. arizonensis adults that emerged from different stages of P. solenopsis were measured. The length and breadth of mummies; body length and width, head width, antenna length, length of fore-leg, middle leg and hind-leg, wing length and width of both male and female A. arizonensis adults that emerged from several instars of P. solenopsis were measured with an accuracy of 0.01 mm using stereo-zoom microscope (SZ40, Olympus, India) equipped with an ocular micrometer. An analysis of variance (ANOVA) for a complete randomized design (CRD) was utilized to analyze the data on morphometric parameters of mummies and A. arizonensis adults. Statistical analyses were realized by using IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp Armonk, NY, USA). The significance of differences was tested by F-tests, and the significance of differences between treatment means was compared using Tukey student's range (HSD) test at 5 percent probability level. The morphometric parameters of A. arizonensis female adults that emerged from 3rd instar nymphal and adult host stages were compared using Student't-test to calculate the level of significance.

2.4 Sample processing for Scanning Electron Microscopy

The samples of A. arizonensis adults were fixed in 2.5 % Glutaraldehyde at 4°C overnight. The fixative was drained and 3 items of washing were performed with 0.1M Sodium Cacodylate buffer for 15 min at 4°C. The wash buffer was drained and 1 % Osmium tetraoxide was added and kept for 1-2 hours at 4°C. Osmium tetraoxide (1 %) was drained and 3 items of washing were performed with 0.1M Sodium Cacodylate buffer for 15 min at 4°C. It was followed by washings with 30, 50, 70, 80, 90, 95 percent Ethanol. They were incubated for 15 minutes at 4°C after each washing. The samples were then washed thrice with 100 percent Ethanol followed by incubation for 20 minutes at room temperature each time. The samples of A. arizonensis were placed in a vacuum desiccator overnight. After drying, the samples were mounted on aluminium stubs (25 x 40 mm) with adhesive tapes. Sputter coating of mounted samples was done with gold: palladium (60: 40) using Ion Sputter Coater (Hitachi E-1010, Japan).

2.5 Scanning Electron Microscopy sample imaging

Scanning Electron Microscope (S-3400N, Hitachi, Japan) equipped with an Energy-dispersive detector (Thermo Noran System SIX) was used to generate high-resolution pictures and accurate measurements for hind-leg of A. arizonensis male and female adults that emerged from 3rd instar nymphs and adult stages of P. solenopsis. Scanning Electron Microscopy was conducted at Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana during 2015. Sputter coated parasitoid specimens were imaged using an objective lens aperture of diameter 500 μm with a working distance (10.0 to 10.9 mm) under high accelerating voltage conditions (15 kV). Images with a
resolution (1280 x 960 pixels) each were recorded at magnifications (60 to 110x).

3. Results and Discussion

3.1 A. arizonensis mummies

A. arizonensis females did not parasitize the 1st instar nymphs of P. solenopsis, so the measurements of mummies were possible from 2nd and 3rd instar nymphs as well as adults of the mealybug host. The length (F2,147 = 2355.91; P < 0.0001) and width (F2,147 = 3189.41; P < 0.0001) of A. arizonensis mummies increased significantly with an advancement in host stage (Table 1). Significantly longer mummies (3.49±0.01 mm) were recorded in adult host stage, followed by 3rd instar (2.48±0.02 mm) and 2nd instar nymphs (1.80±0.01 mm). Similarly, mean width was also found to be significantly higher (1.88±0.01 mm) in mummies from adult host stage followed by 3rd instar (1.54±0.01 mm) and 2nd instar (0.87±0.01 mm) nymphal host stages (Table 1).

In the present study, the dimensions of A. arizonensis mummies increased with an increase in host stage. The differences in measurements among mummies of different host stages may be due to the variation in the body size of mealybug at different life stages. The increase in body size of mealybug, P. solenopsis with the advancement of age in an increasing order of 1st instar nymphs<2nd instar nymphs<3rd instar nymphs<adult has been reported by Hodgson et al. (2008)[13] and Dhawan and Saini (2009)[10]. No information is available in the literature regarding the effect of different host stages on the size of A. arizonensis pupae (mummies). Irrespective of host stage, Sangle et al. (2012)[13] and Aga et al. (2016)[15] reported that length and width of A. arizonensis (= A. bambawalei) pupae varied from 3.37 to 4.43 mm and 1.19 to 2.56 mm, respectively; which corroborate with the present findings with slight deviations which may be due to differences in the host stage and/or environmental conditions.

3.2 A. arizonensis male adult progeny

A significant increase in morphometric parameters for A. arizonensis (male) adults such as body length (F2,51 = 106.77; P<0.0001), body width (F2,51 = 89.64; P<0.0001), antenna length (F2,51 = 60.65; P<0.0001), forewing length (F2,51 = 121.83; P<0.0001) and width (F2,51 = 135.59; P<0.0001), hindwing length (F2,51 = 121.77; P<0.0001) and width (F2,51 = 104.11; P<0.0001) were recorded with an advancement of host stage. The length of fore-leg (F2,51 = 79.35; P<0.0001), middle-leg (F2,51 = 93.94; P<0.0001) and hind-leg (F2,51 = 181.07; P<0.0001) was also recorded to be significantly longer in male adults that emerged from parasitized P. solenopsis adults followed by the 3rd and 2nd instar nymphs (Table 2). The head width of A. arizonensis male adults was significantly higher in adults that emerged from adult host stage (F2, 51 = 73.15; P<0.0001). However, it was not statistically different in adults from 3rd instar and 2nd instar host nymphs (Table 2).

3.3 A. arizonensis female adult progeny

It is worthwhile to mention here that no female adults emerged from the mummies of 2nd instar P. solenopsis nymphs, so the measurements were possible only in A. arizonensis female wasps that emerged from 3rd instar nymphal and adult host stages (Table 3). Female wasps that emerged from P. solenopsis adults exhibited significantly higher mean values for body length (t58 = 41.47; P<0.0001) and width (t58 = 10.68; P<0.0001), head width (t58 = 17.95; P<0.0001), antenna length (t58 = 15.45; P<0.0001), forewing length (t58 = 17.63; P<0.0001) and width (t58 = 7.18; P<0.0001), hindwing length (t58 = 12.69; P<0.0001) and width (t58 = 39.02; P<0.0001) as compared to those which emerged from 3rd instar nymphs. Significantly longer fore-leg (t58 = 28.74; P<0.0001), middle-leg (t58 = 11.71; P<0.0001) and hind-leg (t58 = 10.49; P<0.0001) was recorded for female wasps that emerged from adult host stage in comparison to those which emerged from 3rd instar P. solenopsis nymphs (Table 3).

3.4 Scanning Electron Microscopy measurements of A. arizonensis

The measurements through SEM images revealed relatively longer (1009 µm) hind leg for A. arizonensis male adults that emerged from adult host stage, followed by those which emerged from 3rd instar nymphs of P. solenopsis (708 µm) (Figure 1). However, it was lowest (605.1 µm) in adults from 2nd instar nymphs. A similar trend was observed in the case of female adults; wherein, the length of hind leg was also longer (1635 µm) in adults that emerged from adult host stage as compared to those which came out from 3rd instar P. solenopsis nymphs (1461 µm) (Figure 2). Present results revealed for the first time the precise measurements of A. arizonensis adults that have emerged from different stages of P. solenopsis through SEM images. The length of hind-leg increased with an advancement in host stage.

The quantity of nutritional resources available during larval development is an important determinant of body size in parasitoids [19, 26]. These nutritional resources are often considered as an index of host quality which varies with host stage/size [15, 36]. Moreover, parasitoids may differ in their strategy for utilizing the host body resources in accordance with the host stages. Idiobionts modify their brood/ clutch size in response to the fixed quantity of host body resources available for the survival and development of its progeny in non-feeding host stages (eggs or pupae) [3, 39]. In contrast, koinobionts like A. arizonensis use alternative cues, such as host nutritional status and future growth potential, as the basis for assessment of host quality. Such parasitoids maximize their progeny fitness by preferentially laying eggs in larger, more resourceful hosts and delaying the disruption in the acquisition of food by the host after parasitism; thereby, providing a window of opportunity to the parasitoid progeny for completing their development in feeding and fully functional host[15,29].

It is worthwhile to mention here that no parasitism was observed in 1st instar nymphal stage of the mealybug host, P. solenopsis. Less preference for 1st instar mealybug nymphs may be due to inadequate/ reduced body resources available at younger stages of the host to the parasitoid progeny [8, 9]. Godfray (1994) [15] also indicated that higher fitness costs were involved in the parasitism of small hosts by koinobiont parasitoids, as the development time is often lengthened and survival is often reduced. The present results on less preference for younger stages are consistent with the findings of Fand et al. 2011 [13], He et al. 2015 [17] and Zhang et al. 2016 [42]. Similar findings have also been documented in other parasitoids like Aeniasius vexans Kerrich on Phenacoccus herreni Cox and Williams [6] and Anagyrus loecki Noyes and Menezes on Phenacoccus madeirensis Green [8].

Our studies revealed that parasitism of 2nd instar nymphal stage of P. solenopsis yielded only A. arizonensis male adults in the progeny. The present results corroborate with the
studies conducted by Fand et al. (2011) [13] and Abdin et al. (2013) [1], who also reported that the progeny of A. arizonensis (= A. bambawalei) from 2nd instar P. solenopsis nymphs produced primarily males. Similar findings have also been reported in other parasitoid species like Aphidius ervi (Haliday) on Acyrtosiphon pisum Harris [36], Leptomastix epona (Walker) on Pseudococcus viburni (Signoret) [25] and A. vexans on P. herreni [6].

Our findings revealed that all the morphometric parameters of both male and female A. arizonensis adults increased with a subsequent increase in host stage, which was offered initially to them for parasitism. Larger sized hosts might have provided more resources for the development of the parasitoid which could be a possible reason for the emergence of larger sized A. arizonensis adults from later host stages of P. solenopsis. Larger sized parasitoids exhibit enhanced reproductive fitness and female-biased sex ratio [20, 21, 33, 35] which is highly desirable for improving mass rearing system and increasing the efficiency of any biological control programme. A positive influence of host stage on adult body size has also been documented in several other parasitoids like Aphidius sonchi Marshall on Hyperomyzus lactucae (L.) [20], Ephedrus californicus Baker on pea aphids [34], A. ervi on A. pisum [36], A. vexans on P. herreni [6].

Irrespective of host stage, Sangle et al. (2012) [34] and Aga et al. (2016) [2] have documented various body appendage measurements of A. bambawalei (= A. arizonensis) adults, which corroborate with the present findings with slight deviations. The present results are also in agreement with the findings of Zhang et al. (2014) [41] and Badshah et al. (2016) who also observed that the hind tibia length of A. arizonensis (= A. bambawalei) adults that emerged from the adult stage of P. solenopsis were significantly higher as compared to 3rd instar host stage. However, Fand et al. (2011) [13] reported that the hind tibial length was significantly higher in A. bambawalei adults from 3rd instar P. solenopsis, followed by adult and 2nd instar host stages.

Table 1: Morphometric measurements of mummies from different stages of P. solenopsis

<table>
<thead>
<tr>
<th>Host stage at parasitization</th>
<th>Measurements (mm; n=50)</th>
<th>Mummies length</th>
<th>Mummies width</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd instar</td>
<td>1.80±0.01c</td>
<td>0.87±0.01c</td>
<td></td>
</tr>
<tr>
<td>3rd instar</td>
<td>2.48±0.02b</td>
<td>1.54±0.01b</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>3.49±0.01a</td>
<td>1.88±0.01a</td>
<td></td>
</tr>
</tbody>
</table>

Note: *No successful parasitism occurred on 1st instar nymphs of P. solenopsis; Mean (±SE) within the same column followed by different lowercase letters are statistically different at P<0.05 level according to ANOVA: Tukey HSD test.

Table 2: Morphometric parameters of A. arizonensis adults (male) that emerged from different stages of P. solenopsis

<table>
<thead>
<tr>
<th>Host stage at parasitization</th>
<th>Measurements (mm)</th>
<th>Body length</th>
<th>Body width</th>
<th>Antenna length</th>
<th>Head width</th>
<th>Fore-wing length</th>
<th>Fore-wing width</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd instar</td>
<td>0.70±0.01c</td>
<td>0.35±0.01c</td>
<td>0.50±0.01c</td>
<td>0.40±0.01b</td>
<td>0.67±0.00c</td>
<td>0.31±0.00c</td>
<td></td>
</tr>
<tr>
<td>3rd instar</td>
<td>0.94±0.01b</td>
<td>0.41±0.01b</td>
<td>0.55±0.01b</td>
<td>0.43±0.01b</td>
<td>0.95±0.00b</td>
<td>0.50±0.00b</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>1.28±0.01a</td>
<td>0.47±0.00a</td>
<td>0.59±0.00a</td>
<td>0.51±0.00a</td>
<td>1.19±0.01a</td>
<td>0.54±0.01a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Host stage at parasitization</th>
<th>Measurements (mm)</th>
<th>Hind-wing length</th>
<th>Hind-wing width</th>
<th>Fore-leg length</th>
<th>Mid-leg length</th>
<th>Hind-leg Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd instar</td>
<td>0.39±0.01c</td>
<td>0.15±0.00c</td>
<td>0.37±0.00c</td>
<td>0.54±0.01c</td>
<td>0.62±0.00c</td>
<td></td>
</tr>
<tr>
<td>3rd instar</td>
<td>0.47±0.01b</td>
<td>0.23±0.00b</td>
<td>0.42±0.00b</td>
<td>0.63±0.00b</td>
<td>0.73±0.00b</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>0.55±0.01a</td>
<td>0.29±0.00a</td>
<td>0.50±0.01a</td>
<td>0.82±0.00a</td>
<td>1.03±0.01a</td>
<td></td>
</tr>
</tbody>
</table>

Note: *No successful parasitism occurred on 1st instar nymphs of P. solenopsis; Mean (±SE) within the same column followed by different lowercase letters are statistically different at P<0.05 level according to ANOVA: Turkey HSD test.

Table 3: Morphometric parameters of A. arizonensis adults (female) that emerged from different stages of P. solenopsis

<table>
<thead>
<tr>
<th>Host stage at parasitization</th>
<th>Measurements (mm)</th>
<th>Body length</th>
<th>Body width</th>
<th>Antenna length</th>
<th>Head width</th>
<th>Fore-wing length</th>
<th>Fore-wing width</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd instar</td>
<td>1.47±0.00b</td>
<td>0.80±0.00b</td>
<td>0.59±0.00b</td>
<td>0.78±0.01b</td>
<td>1.18±0.01b</td>
<td>0.60±0.01b</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>1.77±0.01a</td>
<td>0.88±0.01a</td>
<td>0.67±0.01a</td>
<td>0.89±0.01a</td>
<td>1.36±0.01a</td>
<td>0.66±0.01a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Host stage at parasitization</th>
<th>Measurements (mm)</th>
<th>Hind-wing length</th>
<th>Hind-wing width</th>
<th>Fore-leg length</th>
<th>Mid-leg length</th>
<th>Hind-Leg Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd instar</td>
<td>0.61±0.01b</td>
<td>0.26±0.01b</td>
<td>1.15±0.00b</td>
<td>1.32±0.01b</td>
<td>1.47±0.01b</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>0.68±0.01a</td>
<td>0.49±0.01a</td>
<td>1.31±0.01a</td>
<td>1.39±0.01a</td>
<td>1.61±0.01a</td>
<td></td>
</tr>
</tbody>
</table>

Note: *No successful parasitism occurred on 1st instar nymphs of P. solenopsis; only male adults emerged from mummies of 2nd instar P. solenopsis; Mean (±SE) within the same column followed by different lowercase letters are statistically different at P<0.05 level: student’s t-test.
4. Conclusions
The present findings indicated that parasitism of 3rd instar nymphs and adults of P. solenopsis yielded larger sized A. arizonensis adults in the progeny. Therefore, 3rd instar nymphal and adult stages of P. solenopsis may be considered as suitable for the mass production of A. arizonensis on the account of greater nutritional availability for the parasitoid. A better understanding of the parasitoid morphometry emerged from different host stages could be useful for monitoring the fitness or quality of A. arizonensis adults in the mass production system and thereby improving its field performance against P. solenopsis in biological control programmes. The authors further recommend future studies to assess the influence of a larger parasitoid size on the fitness of A. arizonensis.

5. Acknowledgements
The authors are grateful to the Head, Department of Entomology and Dr. Manmeet Brar Bhullar, Senior Acarologist, Department of Entomology, Punjab Agricultural University, Ludhiana for providing necessary facilities to carry out the present research work. We highly acknowledge the help of Dr. Anu Kalia, Incharge, Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana for her kind assistance in imaging of A. arizonensis with Scanning Electron Microscopy.

6. References
8. Chong JH, Oetting RD. Host stage selection of the mealybug parasitoid, Anagyrus sp. nov. nr. sinope. Entomologia Experimentalis et Applicata. 2006; 121:39-
50.
38. Steiner S, Ruther J. How important is sex for females of a haplodiploid species under local mate competition?

