Behavioural and genotoxic effects of paracetamol after subchronic exposure to *Cyprinus carpio*

Madhu Sharma, Subhash Verma and Pardeep Sharma

Abstract
The aim of the present study was to survey the impact of different doses of paracetamol on micronucleus frequency and other morphological deformities of erythrocytes of fish *Cyprinus carpio*. A total of 18 fish were divided into three groups. Group A served as control while group B and C were given treatment with 5 mg/l and 10 mg/l of paracetamol. Behaviour of the exposed fish was observed. Increase in pigmentation, high breathing rate, surface gulping was observed in treatment groups. Blood samples were taken from the caudal vein after 7 and 14 days of exposure. Micronucleated cells, Binucleated cells, fragmented DNA, lobed nucleus, notched nucleus were scored under nuclear deformities and cytoplasmic vacuole and karyolysis were considered as cytoplasmic deformities. A significant increase in values of all the nuclear and cytoplasmic deformities have been observed in dose as well as time dependent manner except for karyolysis cells. Highest effect was observed at the highest concentration and at 14 days of exposure. Study showed that paracetamol have genotoxic effect on fish even at low concentration.

Keywords: Paracetamol, genotoxicity, nuclear abnormalities, cytoplasmic abnormalities

Introduction
Paracetamol also known as acetaminophen is most frequently used analgesic and antipyretic drug [1]. It was first introduced in the year 1955 for its clinical application and since then, it is widely used almost throughout the world. In many countries the drug is readily available over-the-counter without the need of prescription [2]. The consumption of medical drugs and their use in veterinary practice is expected to systematically increase over the coming years, resulting in their increased discharge [3]. It has currently become one of the most emerging pollutants worldwide. Other sources include industrial and hospital discharges, animal waste and improper disposal of expired or unused drugs, landfill leachate and the accidental leakage during manufacturing and distribution [4]. According to the ranking system proposed by environmental agency of England and Wales paracetamol is among the top ten chemical compounds according to their perceived relative risk.

Paracetamol was detected in highest concentrations with an average of 32.4 µg/L in municipal wastewater in Mardon, 3649 ± 851 ng/L in River Kabul and 175 ± 100 ng/L in River Indus in Pakistan [5]. Based on an exhaustive review of literature, it is observed that the relevance of PCs as an emerging contaminant has not been investigated in the India [6]. Studies by Singh et al., 2014 [7] and Shanmugam et al., 2014 [8] in India do indicate the presence of paracetamol in rivers contaminated by urban wastewater.

A number of techniques have been developed to test DNA alterations in aquatic organisms. These include, mainly, chromosomal aberrations, sister chromatid exchange, comet assay and micronucleus assay. Micronucleus assay has advantages over other tests as it is technically easier to use, cheaper, and less time-consuming [9, 10]. In fish change in blood cell is correlated with change in the environment. Therefore, in the presence of toxicant or other stressors changes in blood cells can be seen.

Fish are both ecologically and environmentally important, which is why most environmental research has focused on them [11]. *C. carpio* is a freshwater species of commercial importance and have great potential for aquaculture. *C. Carpio* was selected considering its high commercial value and a higher rate of consumption. It has been widely used in various studies to check the toxicity of different pollutants [12, 13]. This study aimed at increasing the knowledge and understanding about the toxic effects of paracetamol on aquatic vertebrate model *C. carpio* after sub-chronic exposure of 2 weeks.
Materials and Methods

The experimental tanks were of 50 liters capacity each. The fish chosen were of length 19-25 cm, and weight 110-210 grams. Exposure was semi-static and every 24 hours the drug was replenished to complete the initial concentration. Control animal were submitted to the same water change schedule without the addition of paracetamol. Exposure was given for 14 days. Two sub-lethal concentrations of paracetamol were decided as 5 mg/l and 10 mg/l of water for the exposure according to the LC50 value for C. carpio of paracetamol [14]. Blood sampling was done after 7th and 14th day of exposure from all the three groups. The experiment was conducted in triplicate. The fish from both the groups (control and treated) were keenly observed for behavioural inconsistencies and alterations. Different behavioural parameters including moment, equilibrium, operculum beat, air gulping, jumping, hyper activeness, abrupt swimming, aggression, motionless, vertical position, fast swimming and increased surface activity were profusely studied.

Frequency of micronuclei and morphological abnormalities in erythrocytes was evaluated by the method used by [14]. Blood was taken from a caudal vein of fish and then stored in EDTA vials. Then smears of blood were made and then they were dried and fixed in alcohol for 10 minutes. Then the slides were stained with 10% Geimsa stain for 15 min and then seen under oil immersion lens (100x) of microscope. The changes in cytoplasm and nucleus in RBC’s and number of micronucleus were recorded. The results are expressed as mean ± S.E. and to study the significance of the difference in the values of different parameters between treated and control groups a one-way analysis of variance (ANOVA) and Tukey-HSD test using the statistical software SPSS were conducted.

Results and Discussion

Different behavioural changes have been observed in C. carpio after treatment with different concentrations of paracetamol. Initially the fish were active and feeding was normal. After two week there was a moderate decrease in metabolic activity. Change in locomotors activity is due to impairment at neural and neuromuscular levels. Slight change in pigmentation was also observed this is related to a stress condition. Under stress condition increase in pigmentation was observed by [15]. Fishes were showing signs of restlessness, increased respiration rate and were gasping air on the surface with open mouth operculum activity was higher. Paracetamol inhibit enzyme AChE [16] and can lead to behavioural alterations of fish.

Blood cells from peripheral circulation have been used for micronucleus assay as it is easy to isolate and no cellular dissociation is required [17]. The value of all the parameters tested showed a significant increase in treated groups as compared to control group. Dose and time dependent increase in the value of micronuclei, deformed nucleus, vacuolated cytoplasm and caryolysed cytoplasm was observed (Table 1).

Table 1: Frequency of percent Micronucleated cell (MNC), deformed nucleus (DN), vacuolated cytoplasm (VC) and karyolysed cell (KC) in blood cells of fish C. carpio after exposure to different concentrations of paracetamol for 7 and 14 days.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Concentration</th>
<th>Control</th>
<th>7th day</th>
<th>14th day</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNC</td>
<td>5mg/l</td>
<td>0.34±0.47 A</td>
<td>17.33±0.47 B</td>
<td>23.66±0.47 C</td>
</tr>
<tr>
<td></td>
<td>10mg/l</td>
<td>0.66±0.64 A</td>
<td>31.66±0.63 C</td>
<td>42.33±0.63 D</td>
</tr>
<tr>
<td>DN</td>
<td>5mg/l</td>
<td>150.00±3.65 A</td>
<td>336.66±5.65 B</td>
<td>510.00±3.61 C</td>
</tr>
<tr>
<td></td>
<td>10mg/l</td>
<td>145.33±1.8 A</td>
<td>436.66±5.65 B</td>
<td>535.00±1.82 D</td>
</tr>
<tr>
<td>VC</td>
<td>5mg/l</td>
<td>4.33±2.11 A</td>
<td>34.00±0.73 C</td>
<td>56.6±0.5 A</td>
</tr>
<tr>
<td></td>
<td>10mg/l</td>
<td>4.6±0.5 A</td>
<td>65.6±0.42 B</td>
<td>80.00±0.73 B</td>
</tr>
<tr>
<td>KC</td>
<td>5mg/l</td>
<td>6.33±0.89 A</td>
<td>23.33±0.88 B</td>
<td>65.00±0.57 C</td>
</tr>
<tr>
<td></td>
<td>10mg/l</td>
<td>7.0±0.59 A</td>
<td>97.00±1.15 C</td>
<td>60.33±0.89 B</td>
</tr>
</tbody>
</table>

The values given as mean ± standard error. Different letters (a, b, c, d, e, f) between the columns are significantly different (Tukey’s test, p≤0.01) and signify the effect of duration of exposure at each concentration. Similarly, different letters (A, B, C, D) within the columns are significantly different (Tukey’s test, p≤0.01) and signify the effect of different concentrations of paracetamol at the same time interval.

Fig 1: Different nuclear and cytoplasmic abnormalities observed in RBCs of C. carpio in response to paracetamol (a) Normal blood cell (b) vacuolated cytoplasm (c) Uneven distribution of nuclear material in nucleus (d) Karyolysis (e) Blebbed nucleus (f) Micronucleated cell
Under deformed nucleus blebbed, lobed, notched, binucleated, budded and other deformed nuclei were included. Dose dependent increase in different parameters may be due to the accumulation of this hydrophilic compound in body with time and dose. Different reasons for nuclear and cytoplasmic abnormalities in blood cells caused by paracetamol may be its tendency to generate reactive oxygen intermediates (ROI) and reactive nitrogen intermediate (RNI) [8] during its metabolism. These reactive metabolites including NADQI (N-acetyl-p-benzoquinone imine) may react with proteins and nucleic acids [19]. Moreover it has been suggested that unmetabolised paracetamol may inhibit DNA replication and DNA repair by inhibiting the action of specific enzyme ribonucleotide reductase [20]. Blood cells in treatment group show uneven distribution of genetic material in nucleus (Figure 1c) which may be due to inhibition of DNA replication. Such effect provides a reason for paracetamol to cause sister chromatid exchange, micronuclei, chromosomal aberration and apoptosis in cells [21, 22]. Conducted a similar study on mice and showed that normal and high dose of paracetamol may cause sperm DNA fragmentation [23]. Observed that paracetamol has a high tendency to induce genotoxicity and cytotoxicity [24]. Found that micronuclei only produced if DNA damage is evident.

Vliegenthart et al., 2015 [25] found dramatic decrease in mRNA for histone in response to acetaminophen in mice. So it may be possible that this may be due to altered chromatin structure. One of the cytoplasmic changes observed during this study was vacuolated cytoplasm, vacuoles in blood cells may be formed due to the unequal distribution of haemoglobin. Highest karyolysed cells were observed at 7th days of exposure and after treatment with 10 mg/l concentration while a decrease in the value was observed at 14th day of exposure. As paracetamol induce apoptosis in cell and karyolysed cells may be removed from the circulation can be the reason for less karyolysed cells at the highest duration of exposure.

Conclusion
The cytoplasmic and nuclear abnormalities observed in blood cells of C. carpio indicated that paracetamol has behavioural and genotoxic effects. Prudent use and scientific disposal of pharmaceutical compounds is needed so as to curtail toxic effects on human, animal and aquatic fauna health.

Acknowledgement
The authors are sincerely thankful to Dean, College of Veterinary and Animal Sciences for providing laboratory facility.

References
10. Sharma M, Chadha P. 4-Nonylphenol induced DNA damage and repair in fish, Channa punctatus after subchronic exposure. Drug and Chemical Toxicology. 2016; 40(3):1-6
17. Kilemade MF, Hartl MGI, Sheehan D, Mothersill C, Van Pelt FNAM, O’ Halloran J et al. Genotoxicity of field collected inter-tidal sediments from Cork Harbor, Ireland, to juvenile trubot (Scophthalmus maximus L.) as
measured by the comet assay. Environment Molecular Mutagenesis. 2004; 44:56-64.
22. Abedi N, Nabi A, Mangoli E, Talebi AR. Short and long term effects of different doses of paracetamol on sperm parameters and DNA integrity in mice. Middle East Fertility Society Journal. 2017; 22(4):323-328