Effect of different feeding rates on growth and survival of Indian major carp seed

BR Honnananda, Manoj Kumar and Krishana Kumar Choudhary

Abstract
Optimum feeding rate of Indian major carp, *Catla catla, Labeo rohita and Cirrhinus mrigala* fry was determined by feeding rice bran and mustard oil cake diet (RB+MOC) in 1:1 ratio at three feeding rates (T1-4%, T2-8% and T3-12% of body weight per day) for 60 days. Feeding trial was conducted in triplicate. Indian Major Carp fry (3.52-3.58cm, 0.52-0.57g) were randomly stocked at the rate of 20 fish per 500 litre capacity FRP tank. Total body length and body weight gain of fishes increased as feeding rates increased upto 12% body weight, but there is no significance difference (P > 0.05) has been observed between the total body length and body weight gain of fish fed on 8% of body weight (T2) and 12% of body weight (T3). The best specific growth rate (8.07±0.33 % per day) and survival (70±2.89 %) were evident at the ration size of 12% body weight, but there is no significant difference (P > 0.05) between 8% and 12 % ration size. Food conversion ratio (FCR) of 2.22 was significantly higher (p<0.05) in fish fed on ration size 12% of body weight whereas, the least value of 1.32 was obtained in fish fed on 8% of body weight daily. Water quality parameters such as water temperature, pH and dissolved oxygen recorded fortnightly and were found within the ranges for fish culture. Based on the above results, it is recommended that feeding rate 8% body weight per day would be optimal for the best growth performance of Indian Major Carp fry.

Keywords: Feeding rate, growth performance, indian major carp fry

Introduction
In India, culture of the Indian Major Carp; *Catla catla, Labeo rohita and Cirrhinus mrigala* has been directed toward intensification of production because they are the most important commercial fishes in India with maximum market demand and acceptability as food by the consumers due to their taste and flesh. They contribute over 90 % of the total Indian aquaculture production [11].

Indian major carp fingerlings are in great demand all over the Indian sub-continent to serve as the stocking material for culturing table sized fish. Hence, fry rearing is one of the important phases and aims at obtaining high survival and growth for the production of fingerlings required for stocking. The success of any culture trial with fry depends largely on the presence of sufficient, preferred small food organisms the zooplankton [20]. Pond fertilization with organic and inorganic fertilizers is a very cheap and effective method of increasing primary productivity, but their excessive use deteriorates the water quality [13] and depletes the dissolved oxygen to a detrimental level. Pond farming at high intensity levels frequently limits the effects of fertilization [28]. Further, high stocking rates also lead to the reduction of standing crop of natural fish food organisms so; there is need of artificial feed to increase the aquaculture production. During culture, supplementary feeding has become an integral means of achieving greater productivity. Supplementary feeding is the single most critical and expensive variable cost in intensive culture [10]. The economic success of production control in aquaculture depends to a large extent on reasonable feeding costs. One way of reducing feeding costs is to estimate the daily ration and formulate a feeding chart that will best suit local farming conditions.

A variety of ingredients of plants and animal origin has been screened for incorporation in supplementary feed for carps and used either singly or in combination [8]. For supplementary diet, the continued dependence on traditional feed ingredients such as rice bran, oil cakes and fish meal has led to increase in the prices of these components, which in turn determine the profitability of aquaculture enterprises [19]. Hence there is a need to find good quality, cheaper, and readily available alternative resources so as to substitute the costly ingredients in the
The present experiment was conducted in FRP tanks having an average depth of about 0.51 m. All the FRP tanks were thoroughly cleaned, disinfected using potassium permanganate (KMnO₄) solution at 0.5 ppm level and provided a 10 cm layer of soil into the bottom of the tank and filled with clear water and kept for maturation for 2 days before the stocking of fry. To begin the experiment, Known sizes of healthy induced bred fry of IMC were stocked at the rates of 20 numbers in per tank in different species combinations and ratios.

Experimental design

The FRP tanks were divided into three treatments namely T1, T2 and T3, each having three replications. The stocking density of fry could be maintained at @ 20 numbers in each 500 litres capacity FRP tank and they will be fed with Farm made feed (Mustard oil cake + Rice bran) mixed in 1:1 ratio, twice a day. The experiment would consist of feeding of C. catla, L. rohita and C. mrigala fry with different feeding rates (T1:4%, T2:8%, T3:12% of body weight) in completely randomized design (CRD) for a period of 60 days. The 50% water exchange was done every 15 days to remove the excess feed remained at bottom.

Table 1: Experimental design

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Feeding rates (% per body weight)</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>4</td>
<td>T1R1</td>
</tr>
<tr>
<td>T2</td>
<td>8</td>
<td>T2R1</td>
</tr>
<tr>
<td>T3</td>
<td>12</td>
<td>T3R1</td>
</tr>
</tbody>
</table>

Growth performance

Sampling was done every fifteen days interval. Stocked fishes were sampled from each of the pond in the morning (from 08h to 09h) by using hand net. The length of the body of each fish sample were measured in centimetres (cm) while weight of the fish were measured in nearest gram (g) by using measuring scale and analytical balance (Contech CA-234) respectively. From each tank, fish was randomly collected and the following parameters were measured and analysed:

1. **Length gain (cm):** Length gain = Final total body length (cm) - Initial total body length (cm)
2. **Body weight gain (g):** Body weight gain = (Wt – W0) Where, W0 and Wt were live weight at the time of starting the experiment and at the end of the experiment for the duration of days for the size used.
3. **Specific growth rate:** SGR (% day⁻¹) = [ln BWفش – ln BWš /day on trial] ×100, Where, BWفش and BWš were initial and final body weights of the fish, respectively.
4. **Survival (%):** = [Total number of fish harvested / Total number of fish stocked]×100

Feed utilization performance

Feed conversion ratio (FCR) =Amount of dry feed intake (g)/fresh weight gain in fish (g).

Water quality parameters

The water quality parameters such as temperature, dissolved oxygen (DO) and pH were monitored fortnightly throughout the experimental period. Water temperature of the tanks was measured with the help of Celsius thermometer. Dissolved oxygen of the tank water was measured by using titrimetric method (Winkler’s method) [3]. Electronic pH meter (Micro controller based pH meter, model CL-180) was used to measure the pH of water. All analysis was done in the Water Quality Laboratory of the College of Fisheries, Kawardha, Chhattisgarh, India.
Statistical analysis
The data was analyzed statistically and interpreted by using Statistical Package for Social Sciences (SPSS, version 16.0) and Analysis of variance (one way - ANOVA) was performed to determine the differences between the mean values of different treatment. Differences in means were compared by Duncan’s New Multiple Range test \(^{[13]}\) at \(P<0.05\) level.

Results
Growth and survival
During the culture period, fishes exhibited consistent increase in mean length and weights during 60 days of experiment. The mean length of IMC fry were increased from 3.52 cm to 5.45 cm (T1), 3.57 cm to 6.33 cm (T2) and 3.58 cm to 7.01 cm (T3), whereas mean weight increased from 0.52 g to 2.75 g (T1), 0.55 g to 4.88 g (T2) and 0.57 g to 5.41 g (T3). The growth performance of IMC during the experimental period is shown in Table 2. The mean length gain and weight gain was found to be increased significantly (\(p<0.05\)) with the increasing feeding rate up to 12% of body weight. The Initial mean length of carp seed for different treatment ranged between 3.52 cm to 3.58 cm whereas variations from 5.45 cm to 7.01 cm in the final mean length were observed. The highest mean length gain (3.42±0.25 cm) was observed in fish fed on diet 12% of body weight (T3) but there is no significance difference (\(p>0.05\)) has been observed in the length of fish fed on 8% body weight (T2) and 12% body weight (T3). The initial mean weight of carp seeds for different treatments ranged between 0.52g to 0.57g whereas variation from 2.75g to 5.41g in the final mean weight was observed. The highest mean weight gain (4.84±0.20 g) was observed in fish fed on diet 12% of body weight (T3), but no significant difference (\(p>0.05\)) were observed on 8% and 12% ration size.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial mean length (cm)</td>
<td>3.52±0.06a</td>
</tr>
<tr>
<td>Mean Final length (cm)</td>
<td>5.45±0.18a</td>
</tr>
<tr>
<td>Mean Length gain (cm)</td>
<td>1.94±0.22a</td>
</tr>
<tr>
<td>Initial mean weight (g)</td>
<td>0.52±0.02a</td>
</tr>
<tr>
<td>Mean Final weight (g)</td>
<td>2.75±0.35a</td>
</tr>
<tr>
<td>Mean Weight gain (g)</td>
<td>2.23±0.34a</td>
</tr>
<tr>
<td>Specific growth rate (SGR) (% d(^{-1}))</td>
<td>3.72±0.57a</td>
</tr>
<tr>
<td>Survival (%)</td>
<td>50±2.89a</td>
</tr>
<tr>
<td>Feed conversion ratio (FCR)</td>
<td>1.42±0.01b</td>
</tr>
</tbody>
</table>

***Different upper-case letters in the same column denote significant differences according to Duncan test \(p<0.05\).

Overall survival (%) of the fish varied from about 50% to 70% in different treatment. There was significant difference (\(p<0.05\)) in overall survival (%) among the treatment (Table 2), 70% survival was found in T3 and the lowest was found in T1 (50±2.89%). The specific growth rate (%/day) of the fish were recorded in ascending order from T1 (4%), T2 (8%) and T3 (12%), with their values 3.72±0.57, 7.21±0.26 and 8.07±0.33, respectively (Table 2). There is significant (\(p<0.05\)) difference among the treatment, the highest specific growth rate was (8.07±0.33) recorded in fish fed on diet 12% of body weight (T3) and the least (3.54±0.66) fed on diet 4% of body weight (T1), but SGR was not significant on 8% and 12% ration size.

Feed utilization
The feed utilization parameter such as apparent feed utilization parameters namely apparent feed conversion ratio (FCR) was evaluated for different treatment and is presented in Table 2. The apparent feed conversion ratio (FCR) showed significant variation (\(p<0.05\)) between different treatment. Good FCR value (1.32±0.01) was observed in T2.

Water quality parameter
The water quality parameters were recorded fortnightly. In general, the water quality parameters was within normal range and varied randomly without indicating any remarkable pattern during the whole duration of the experiment. The range values of different parameters of the water including water temperature (°C), pH and dissolved oxygen (mg l\(^{-1}\)) are presented in the Table 1. The temperature during the whole experiment was in range of 28.2 °C to 29.2 °C. The pH during the experiment was ranged from 7.2 to 7.8. Dissolved oxygen was in the range of 4.06 - 6.6 mgL\(^{-1}\).

Discussion
Growth and survival
Information on optimum feeding rate is a prerequisite to determining the nutrient requirement and production. Growth rate and feeding rate interact to determine FCR and are used to estimate the daily ration for a particular fish stock \(^{[18]}\). Fish loses their weight when their nutrient intake rate falls below that required for daily maintenance \(^{[18]}\). As food availability increases, the quantity consumed by the fish will also increase, giving a linear increase in specific growth rate (SGR %) up to the point of maximum voluntary food intake. If fish are fed above their appetite, then the extra food will be wasted and an artificially high FCR will result. So, high FCR can result from both over- and under-feeding. Excessive feeding does not necessarily result in higher growth. Beyond a certain level, excessive feeding has no influence on the growth and result in poor growth \(^{[9]}\). Significant variation (\(p<0.05\)) in growth was observed between the treatments (Table 2). Our results indicated that total body length and body weight gain of fishes significantly increased as increasing the feeding rate of fish up to 12% body weight. But there is no significant difference (\(p>0.05\))
has been observed between total body length and body weight gain of fish fed on 8% body weight (T2) and 12% body weight (T3). This indicates that feeding of fishes with 8% body weight per day results in maximum utilization of food for growth. The best specific growth rate (8.07±0.33 % per day) and survival (70±2.89 %) were evident at the ration size of 12% body weight, but there is no significance difference (P > 0.05) between 8% and 12% ration size. These results are in accordance with the work of Seenappa and Devaraj (1991) [20] who concluded that the total weight gain (%), daily rate of growth mg/g live fish/day, specific growth rates (%/day) were least in Catla fry fed at 4% body weight and were maximum in fry fed at 14% body weight, but 10, 12 and 14% was statistically similar (p>0.05), indicating that 10% ration would be optimal for Catla fry. In the result of Ahmed (2007) [2], it was concluded that feeding of C. mrigala [7]. Water quality determines to a great extend the success or failure of a fish culture operation [23]. The water quality parameters in all the tanks during the experimental period of 60 days were within the acceptable ranges. The water quality parameters of the experimental tanks are showed in Table 3. The water parameters in experimental tanks during the culture period were recorded fortnightly. There were no drastic changes in temperature, pH and dissolved oxygen. The temperature was in the range 28.2-29.2 °C during the whole experimental period. The water temperature in fish tank has a great impact on growth rate, feed consumption and other metabolic functions [25]. For instance, pH ranges 7.2-7.8 (acceptable range: 6.5-8.5) as reported by Saha (2010) [24]. The dissolved oxygen concentration of tank water remained in a suitable range of 4.6-6.6 mg/l which is well within the optimum in all the treatment [27].

Conclusion

The present study suggests that a ration level of 8% body weight would be optimal for carp seed whether the mustard oil cake and Rice bran (1:1 ratio) used as feed for growing carps fry to fingerling. The results of the present study could help fish feed farmers to get maximum yield in a minimum period of time for the carps fed with cheap and proper feed.

References

