Evaluation of a spinetoram-based insecticide against lepidopteran and thrips infesting acacia and eucalyptus in Sumatra, Indonesia

Dr. Srikumar Koda Kkadan, Betty Andriany Sirait, Rianza Asfa, Dr. Wagner de Souza Tavares, Marthin Tarigan, Dr. Alvaro Duran, Dr. Ching Yong Wong and Dr. Mukesh Sharma

Abstract
Feeding by the Spodoptera exigua (Hübner, 1818) (Lepidoptera: Noctuidae) and Scirtothrips sp. (Thysanoptera: Thripidae) cause damage to Acacia crassicarpa A. Cunn. ex Benth. (Fabaceae) plants and these pests are key factors affecting the production in nurseries. Leafroller, Strepisipriscus semicanellana (Walker, 1866) (Lepidoptera: Tortricidae) cause severe damage to young Eucalyptus spp. (Myrtaceae) plantations. Use of low-hazard insecticide with the conservation of populations of natural enemies integrates effective management. Nursery and field experiments were conducted in 2018-2019 to evaluate the low-hazard insecticide, spinetoram for control of lepidopteran and thrips. Insecticides were applied in combination with surfactant. A spinetoram-based solution (0.12%) was exceedingly effective for the control of S. exigua and thrips in nursery. Effectiveness of spinetoram-based solution (0.12%) was 100% to S. exigua and 95% to Scirtothrips sp. at 15 days after treatment (DAT). Severity of Scirtothrips sp. was 5.3% in the spinetoram (0.12%) treatment while it was 80% in standard check chlorpyrifos (0.4%) and 96% in untreated control at 15 DAT. Spinetoram at 12 g a.i./ha was significantly effective than standard check imidacloprid at 20 g a.i./ha against S. semicanellana in Eucalyptus spp. plantation reducing severity from 58 to 2.8% at 30 DAT. Spinetoram at five, seven and 10 g a.i./ha was on par (P≤ 0.05%) at 10 DAT compared to 2 g a.i./ha and untreated control against S. semicanellana. Spinetoram has broad insecticidal spectrum activity and reliable indices for integrated pest management strategies against major pests of A. crassicarpa and Eucalyptus spp.

Keywords: Acacia, broad-spectrum insecticide, control, Eucalyptus, pest, spinosyn

Introduction
Acacia crassicarpa A. Cunn. ex Benth. (Fabales: Fabaceae) and Eucalyptus spp. (Myrtales: Myrtaceae) are the two main genera used in the tropical forest plantations of Indonesia [1, 2]. Acacia crassicarpa A. Cunn. ex Benth. and Acacia mangium Willld. formed major backbones of paper, pulp and viscose production for at least three decades [3, 4]. The spread of two diseases [i.e. Ceratocystis Ellis & Halst. (Microascales: Ceratocystidaceae) and Ganoderma P. Karst. (Polyporales: Ganodermataceae)] in relation to damage to fauna and by the humid tropical environment has forced a change of planted species from A. mangium to A. crassicarpa and to Eucalyptus spp. related interspecific hybrids [5]. Acacia hybrids (A. mangium × Acacia auriculiformis A. Cunn. ex Benth.) were also planted in recent times especially in Vietnam [6, 7]. Nurseries and plantations with A. crassicarpa and Eucalyptus spp. experiences insect pest losses despite the best efforts at control [8, 9, 10]. Nursery seedlings of A. crassicarpa and Eucalyptus spp. are attacked by a large number of insects including aphids such as the cowpea aphid, Aphis craccivora C.L. Koch, 1854 and the cotton aphid, Aphis gossypii Glover, 1877 (Hemiptera: Aphididae), defoliating caterpillars (Lepidoptera: Erebidae and Noctuidae), fungus gnats (Diptera), green leafhoppers such as Empoasca sp. (Hemiptera: Cicadellidae), leafrollers (Lepidoptera: Crambidae and Tortricidae), mealybugs such as the striped mealybug, Ferrisia sp. and the long-tailed mealybug, Pseudococcus sp. (Hemiptera: Pseudococcidae), mites (Acari: Tetranychidae), sap sucking bugs including Helopeltis theivora Waterhouse, 1886 (Hemiptera: Miridae), thrips such as Scirtothrips sp. (Thysanoptera: Thripidae), and whiteflies including Bemisia sp. (Hemiptera: Aleyrodidae) [11, 12, 13]. Recently the beet armyworm, Spodoptera exigua (Hübner, 1818) (Lepidoptera: Noctuidae) and Scirtothrips sp.
emerged as major pests in nursery causing economic loss to Acacia spp. seedlings [14, 15]. Leafroller comprised by Streblespectra semicrella (Walker, 1866) (Lepidoptera: Tortricidae) and other species and sap sucking bugs such as Arthriticus eugeniae Bergroth, 1923, Helopeltis bradyi Waterhouse, 1888, H. theivora, and Ragweilellus festivus (Miller, 1954) (Hemiptera: Miridae) cause serious damage to young Eucalyptus spp. plantations [16, 17].

The nursery and field pests of Acacia spp. and Eucalyptus spp. are mostly managed by insecticides [18]. As most of the forest companies are aligned with Forest Stewardship Council (FSC; Bonn, Germany) policies, there is regulation to use highly hazardous pesticides [19, 20]. Integrated pest management (IPM) highlights to rotate the active ingredients and to use environmentally safer molecules [23]. Spinetoram is a semi-synthetic insecticide developed by Dow AgroSciences LLC [Zionsville, Indiana, United States of America (USA)] and registered under the reduced risk pesticide initiative by the United States Environmental Protection Agency (EPA) (William Jefferson Clinton Federal Building, Washington, D.C., USA) [12, 23]. United States EPA presented spinetoram with a 2008 Green Chemistry Award (Royal Society of Chemistry; Burlington House, London, United Kingdom) in the category of designing greener chemicals [24]. It is a derivative of the biological active substances spinosoids produced by the soil actinomycete Saccharopolyspora spinosa Mertz & Yao, 1990 (Actinomycetales: Pseudonocardiaceae) [25, 26]. This compound is characterized by a high safety profile and relatively long persistence [27]. Spinetoram acts through a novel site in the nicotinic receptor that is distinct from neonicotinoids or any other nicotinic actives [28]. Spinetoram activates α6-αChR triggering cascade of events leading to insect death. This mode of action is effective in controlling a variety of insect pests, belongs to blattodean (e.g. termites), coleopteran, dipteran, hymenopteran (e.g. ants), lepidopteran, and thysanopteran [24, 29].

The objectives of the current study were to test efficacy of a spinetoram-based insecticide against 1) S. exigua and Scirtothrips sp. in A. crassicarpa nursery and 2) leafroller, S. semicanella in young Eucalyptus spp. plantations.

Materials and methods
Nursery experiments
Insecticides were tested against S. exigua and Scirtothrips sp. in the nursery of PT. Riau Andalan Pulp and Paper (RAPP) in Pangkalang Kerinci, Riau, Sumatra, Indonesia (0° 23’ N x 101° 51’ E, 10 m above sea level) during December 2018. Spinetoram available in the brand name Endure 120 SC® from PT. Dow AgroSciences Indonesia (Jakarta, Indonesia) was evaluated for efficacy with standard check chlorpyrifos (class: organophosphate) in brand name Dursban 200 EC® from PT. Dow AgroSciences Indonesia. Sand beds of A. crassicarpa mother plants, infested with S. exigua, were selected for first set of experiment. One sand bed comprised of 1,500 A. crassicarpa mother plants planted. Two sand beds were treated with Endure 120 SC® at 0.12% in combination with surfactant applied at 0.1% v.v-1 (Agristarik 400 L; a.i.: alkyl aryl polyglycol ether at 400 mL L-1; PT. Bayer Indonesia, Jakarta, Indonesia) and sand beds with Dursban 200 EC® at 0.4% in combination with surfactant at 0.1% v.v-1. Two beds were applied with water from a nearby well as control treatment. In each sand bed 25 plants were selected randomly, tagged with red tape and assessed for S. exigua infestation. Severity of S. exigua was assessed before treatment and two, five, nine, 12, and 15 days after treatment (DAT) based on nursery monitoring schedule. Severity of each labelled plant was measured using the scale: 0= healthy shoots (no fresh injury and living insects), 1= 1-25% of shoots with fresh injury and/or living insects, 2= 26-50% of shoots with fresh injury and/or living insects, and => 50% of shoots with fresh injury and/or living insects. Four shoots from the top were assessed per plant.

In second set of experiment A. crassicarpa mother plants in sand beds infested with Scirtothrips sp. were selected. A spinetoram-based insecticide was evaluated for efficacy with standard check propoxur 50% + dimehypo 25% (Provost 75 WP®; PT. Mitra Kreasidharma, Jakarta, Indonesia) against Scirtothrips sp.. Two sand beds each were treated with Endure 120 SC® at 0.12% and Provost 75 WP® at 0.08% in combination with surfactant at 0.1% v.v-1, respectively. Two beds were applied with water from a nearby well as control treatment. In each sand bed 25 plants were selected randomly, tagged with red tape and assessed for Scirtothrips sp. infestation. Insecticide treatments were done using lever-operated manual knapsack sprayer (Alpha 16®; Jakarta, Indonesia). Spray tank capacity was 16 L and pump pressure 2-4 bar (29-58 psi). Nozzle (spray angle 80°, FCX 04, ST. Spray Nozzle, Malaysia) used was solid cone with 2.10 L/min. discharge rate at 2 bar. Total spray solution used for one bed was 4 L in 2.5 min. Severity of Scirtothrips sp. was assessed before treatment and one, four, seven, 12, and 15 DAT. Severity of each labelled plant was measured using the scale: 0= healthy shoots (no fresh injury and living insects), 1= 1-25% of shoots with fresh injury and/or living insects, 2= 26-50% of shoots with fresh injury and/or living insects, and => 50% of shoots with fresh injury and/or living insects. Four shoots from the top were assessed per plant.

Severity (%) was calculated according to the following formula: severity= [0 × number of plants with injury or larva/nymph/adult equal to 0] + (1 × number of plants with injury or larva/nymph/adult equal to 1) + (2 × number of plants with injury or larva/nymph/adult equal to 2) + (3 × number of plants with injury or larva/nymph/adult equal to 3) ÷ (3 × total plants in the plots)] × 100. Formula was used to calculate the effectiveness of treatments with insecticide [(X – Y) ÷ X] × 100. X= the per cent severity in the check and Y= the per cent severity in the treatment beds [30].

Field experiments
Leafroller, S. semicanella infested Eucalyptus spp. (Eucalyptus pellita F. Muell. and Eucalyptus grandis W. Hill × E. pellita) plantation of age 1.5 months belonging to RAPP in Teso East Sector, Riau, Sumatra, Indonesia (0° 30’ N x 101° 26’ E, 15 m above sea level) was selected for field trials. In the first experiment, Endure 120 SC® at 12 g a.i./ha was evaluated with the standard check imidacloprid (Confidor 200 SL®; PT. Bayer Indonesia, Jakarta, Indonesia) at 20 g a.i./ha. Control was without any treatment. Treatments were arranged in a randomized block design with 10 replications. Each treatment comprised of 7 × 7 plants in gross plot and 5 × 5 plants in net plot. Spacing between the plants was 3 × 2 m (initial stocking of 1,647 trees/ha-1). In second experiment, Endure 120 SC® at two, five, seven, 10, and 12 g a.i./ha was tested. Control was without any treatment. Treatments were arranged in a randomized block design with five replications. Insecticide treatments were done using lever-operated manual knapsack sprayer (Alpha 16®). Spray solution received per
plant in the treatment plots was 61 mL. The assessment of *S. semicanella* infestation was conducted before treatment and 10, 20 and 30 DAT. Presence of *S. semicanella* larva in each plant was classified according to the following scale: 0= healthy shoots (no living larva), 1= less than 25% of shoots with larva, 2= 26-50% of shoots with larva, 3= more than 51-75% of shoots with larva, and 4= 75% of shoots with larva. All branches were assessed per plant.

Severity (%) was calculated according to the following formula: severity = [(0 × number of plants with larva equal to 0) + (1 × number of plants with larva equal to 1) + (2 × number of plants with larva equal to 2) + (3 × number of plants with larva equal to 3) + (4 × number of plants with larva equal to 4) ÷ (4 × total plants in the plots)] × 100.

Incidence (%) is calculated according to the following formula: incidence = [(number of infested plants) ÷ (total plants in the plots)] × 100.

Statistical analysis

Statistical analysis was performed to determine the effect of treatment on measured parameters by using the analysis of variance (ANOVA) at the level of confidence at 5%. Difference between treatments for each parameter analyzed by the Duncan’s new multiple range test (MRT) with a confidence level at 5% if significant difference was detected. Data was analyzed using IBM SPSS® software, version 19 [31].

Results and discussion

Effectiveness of spinoteram against *S. exigua* on *A. crassicarpa* in nursery

Spinetoram has board spectral insecticide property against leafrollers, thrips, whiteflies, and defoliating caterpillars mainly *Spodoptera* [32, 33, 34]. The results from current experiment in nursery suggest that *S. exigua* were highly sensitive to spinetoram at 0.12% than chlorpyrifos at 0.40%. Severity of *S. exigua* was 0% in the spinetoram (0.12%) treated beds while it was 8% in chlorpyrifos (0.40%) and 13% in water treated control at 15 DAT. Spinetoram (0.12%) caused 100% larval mortality at 5 DAT (Figure 1). Effectiveness of spinetoram was 100% at 5 DAT against *S. exigua* and *S. litura*. It was observed that effectiveness of chlorpyrifos was 92% and water treated control 87% at 15 DAT (Table 1). Operational nursery activity of harvesting *Acacia* shoots during the course of trial may lead to natural reduction of infestation.

Table 1: Effectiveness of insecticides against *Spodoptera exigua* (Lepidoptera: Noctuidae) on *Acacia crassicarpa* (Fabaceae) in nursery.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>0 DAT</th>
<th>2 DAT</th>
<th>5 DAT</th>
<th>9 DAT</th>
<th>12 DAT</th>
<th>15 DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinetoram (0.12%)</td>
<td>0</td>
<td>92</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Chlorpyrifos (0.40%)</td>
<td>0</td>
<td>68</td>
<td>73</td>
<td>69</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>Control (water)</td>
<td>0</td>
<td>43</td>
<td>81</td>
<td>84</td>
<td>84</td>
<td>87</td>
</tr>
</tbody>
</table>

DAT= days after treatment. Abbott (1925) formula= [(X – Y) ÷ X] × 100. X= the per cent severity in the check and Y= the per cent severity in the treatment beds.

Effectiveness of spinoteram against *Scirtothrips* sp. on *A. crassicarpa* in nursery

Spinetoram at 0.12% was extremely effective for the control of *Scirtothrips* sp. in nursery. Severity of *Scirtothrips* sp. was 5.30% in the spinetoram treated beds while it was 80% in chlorpyrifos and 96% in water treated control beds at 15 DAT. Spinetoram caused 100% *Scirtothrips* sp. mortality at 7 DAT (Figure 2).
Evaluation of insecticides against *Scirtothrips* sp. (Thysanoptera: Thripidae) on *Acacia crassicarpa* (Fabaceae) in nursery.

Effectiveness of spinetoram was 100% at seven and 12 DAT (Table 2). In addition, it was observed that effectiveness reduced to 95% at 15 DAT. Effectiveness of chlorpyrifos was 20% and water treated control was 4% at 15 DAT.

Table 2: Effectiveness of insecticides against *Scirtothrips* sp. (Thysanoptera: Thripidae) on *Acacia crassicarpa* (Fabaceae) in nursery.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>0 DAT</th>
<th>1 DAT</th>
<th>4 DAT</th>
<th>7 DAT</th>
<th>12 DAT</th>
<th>15 DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinetoram (0.12%)</td>
<td>0</td>
<td>75</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>Chlorpyrifos (0.40%)</td>
<td>0</td>
<td>85</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Control (water)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Abbott (1925) formula: \[
\frac{(X - Y)}{X} \times 100.
\]

Spinoteram at 0.12% has greater utility for *S. exigua* and *Scirtothrips* sp. management in nursery. The results showed that the effectiveness of spinetoram was 100% to *S. exigua* and 95% to *Scirtothrips* sp. at 15 DAT. Spinoteram 12 SC® at 36 and 45 g a.i./ha was highly effective against the tobacco cutworm, *Spodoptera litura* (Fabricius, 1775) (Lepidoptera: Noctuidae) in minimizing leaf damages on common onion plants, *Allium cepa* L. (Asparagales: Amaryllidaceae) [33]. A similar trend in fall armyworm, *Spodoptera frugiperda* (J.E. Smith, 1797) (Lepidoptera: Noctuidae) larval mortality was observed at 48 h after spinetoram 120 SC® (130 mL/ha) application in maize plants, *Zea mays* L. (Poales: Poaceae) [35]. Field trial for four years showed that foliar applications of spinetoram at 13 g a.i./ha was effective to manage a complex of thrips including the tobacco thrips, *Frankliniella fusca* (Hinds, 1902) and the onion thrips, *Thrips tabaci* Lindeman, 1889 (Thysanoptera: Thripidae) infesting upland cotton seedlings, *Gossypium hirsutum* L. (Malvales: Malvaceae) [36].

Effectiveness of spinoteram against *S. semicanella* on *Eucalyptus* in field

Infestation of *S. semicanella* in the selected *Eucalyptus* spp. plantation was 100% prior to establish the insecticide treatments. Significant (P= 0.05) reduction of *S. semicanella* incidence was noticed in the spinetoram at 12 g a.i./ha treatment when compared to imidacloprid at 20 g a.i./ha treatment and control blocks. Spinoteram was greatly superior in minimizing the incidence of *S. semicanella* from 100 to 11% at 30 DAT. Standard check imidacloprid was significantly (P= 0.05) better than control but inferior to spinetoram. *Strepsicrates semicanella* incidence was 24% in imidacloprid treatment whereas in control it was 93% at 30 DAT (Figure 3).

![Figure 2: Evaluation of insecticides against *Scirtothrips* sp. (Thysanoptera: Thripidae) on *Acacia crassicarpa* (Fabaceae) in nursery.](image)

![Figure 3: Incidence of leafroller, *Strepsicrates semicanella* (Lepidoptera: Tortricidae) on *Eucalyptus* spp. (Myrtaceae) in field to different insecticides. Bars with same letters are not significantly different at P= 0.05.](image)
Spinetoram at 12 g a.i./ha was significantly ($P = 0.05$) superior in minimizing the severity of *S. semicanella* from 58 to 2.8% at 30 DAT (Figure 4). Severity of *S. semicanella* in imidacloprid treatment was significantly ($P = 0.05$) better than control but inferior to spinetoram. *Strepsicrates semicanella* severity was 7.5% in imidacloprid treatment whereas it was 54% in control at 30 DAT.

Similarly, to *S. semicanella* in the current study, spinetoram was greatly effective against the oblique banded leafroller, *Choristoneura rosaceana* (Harris, 1841) (Lepidoptera: Tortricidae) in pome fruit (Rosales: Rosaceae) garden, also the resistance development was slower than to chlorantraniliprole insecticide [37]. Spinetoram (0.42 Kg/ha) provided long-lasting (seven days) control against all stages of both key pests of cranberries, *Vaccinium* sp. (Ericales: Ericaceae), the sparganothis fruitworm moth, *Sparganothis sulfureana* (Clemens, 1860) and the parallel-banded leafroller moth, *Choristoneura parallela* (Robinson, 1869) (Lepidoptera: Tortricidae) [38].

Data pertaining to *S. semicanella* severity at different doses of spinetoram is presented (Table 4). Mean *S. semicanella* severity inferred that spinetoram at two, five, seven, 10, and 12 g a.i./ha were significantly ($P = 0.05$) superior than control. At 30 DAT all the tested doses of spinetoram were on par and statistically ($P = 0.05$) superior to untreated control (23%) (Table 4).
Spinetoram, evaluated in the current study, is suitable component of IPM programs that employ biological control agents [32]. In addition, spinetoram in recommended dosages does not cause phytotoxicity effects on treated plants [32, 33]. Field experiments were conducted and results revealed that application of spinetoram at 45 g a.i./ha showed low impact to coccinellid predators (Coleoptera) (9.6 and 5.5% reduction) of tomato ecosystem, Solanum lycopersicum L. (Solanaceae) [39]. Spinetoram can be effectively used in IPM program against the western flower thrips, Frankliniella occidentalis Pers. 1895 (Thysanoptera: Thripidae) by conserving the populations of the insidious flower bug, Orius insidiosus (Say, 1832) (Hemiptera: Anthocoridae) on pepper plants, Pepper L. (Piperaceae: Piperaceae) [40]. Spinetoram showed no significant effects on the honeybee, Apis L., 1758 (Hymenoptera: Apidae), domestic silk worm, Bombyx mori (Linnaeus, 1758) (Lepidoptera: Bombycidae) and other tested non-target organisms [41]. The spinosyn families of insecticides show greater selectivity toward target insects and lesser activity against many beneficial predators as well as mammals and other aquatic and avian animals when compared with many other insecticides [42].

Conclusion

Spinetoram is an effective molecule to be utilized in Forestry compliant with FSC (Forest Stewardship Council) certification. The effectiveness of spinetoram-based solution was 100% to S. exigua and 95% to Scirtothrips sp. at 15 days after treatment (DAT) in nursery and minimizing the severity of S. semicanella from 58 to 2.8% at 30 DAT in field. Results from the current study confirmed that spinetoram exhibited broad spectrum insecticidal activity. As there is also risk of development of resistance to the continuous use of same molecule, insecticide rotation program has to be emphasized for better management of these pests.

Acknowledgements

The authors gratefully acknowledge B.Sc. Mardiana, colleagues from the Biomolecular Laboratory (PT. Riau Andalan Pulp and Paper; Pangkalan Kerinci, Riau, Sumatra, Indonesia) and Dr. Laurence A. Mound (Australian National Insect Collection-CSIRO, Canberra, Australia) for rendering help in statistical analysis, molecular identification of S. exigua and identification of Scirtothrips sp., respectively. Thanks also to other colleagues in nursery and field who contributed for this project.

References

5. Namibiar EKS, Harwood CE, Mendham DS. Paths to sustainable wood supply to the pulp and paper industry in Indonesia after diseases have forced a change of species from acacia to eucalyptus. Agricultural Forestry. 2018; 81:148-161.
10. Sirait BA, Sinulingga NGHB, Samosir MN, Tavares W de S, Kkadan SK, Tarihag M, Duran A. First report of Myllocerus scapularis Roelofs (Coleoptera: Curculionidae) and Rhytiphora bankii (Fabricius) (Coleoptera: Cerambycidae) on commercial plantings of Acacia crasscarpa (Fabaceae) in Indonesia. Coleopterists Bulletin; (in press), 2020.

40. Srivastava M, Bosco L, Funderburk J, Weiss A. Spinetoram is compatible with the key natural enemy of *Frankliniella* species thrips in pepper. Online. Plant Health Progress https://doi.org/10.1094/PHP-2008-0118-02-RS
