Advances in genome editing technology and its applications in poultry breeding

A Latha Preethi, KA Saravanan, Harshit Kumar, Darji Mayank Kumar Virbhai, Shiv Kumar Tyagi, Divya Rajawat, Kaiho Kaisa, Bharat Bhushan and Manjit Panigrahi

Abstract
Poultry has always had a unique range of applications in a variety of fields. Despite being an extremely valuable model organism for research, its usage lagged as their development almost takes place within an egg, and incubated outside which makes it strenuous to approach and handle the zygote. The techniques of precise editing of specific loci in the genome using the programmable genome editing tools have nullified this lag of poultry species to be used as a research model. The genome-editing technique thus generates highly valuable and quality-improved poultry, purely based on primordial germ-cells, which are the progenitor cells of gametes, differentiating poultry species from that of the mammalian system. In this review, PGC-mediated genome editing in birds and their applications in the poultry field has been briefed.

Keywords: Precise editing, programmable genome-editing tools, primordial germ-cells, applications in poultry industry

Introduction
Protein is a vital ingredient of body framework at the molecular level. The protein mass in healthy adults is relatively large, representing 10.6 kg, or 15.1%, of body mass [1]. Protein undernutrition can lead to many adverse sequelae. One can overcome this undernutrition easily by picking up protein from many food sources, including plants and animals but the nutritional value is bent on the quantity and quality of protein. Therefore, it is theoretically recommended to consume high-quality protein of animal sources which is highly required for optimal growth, development, and health of humans [2]. Among the animal protein sources, poultry produce (meat and eggs) have a unique place. Poultry meat and eggs being the finest fountainhead of standard protein, many millions of people are stand in need of it. Besides high-quality protein, they also furnish crucial vitamins and minerals. Net protein utilization (NPU) is an index of protein quality. The eggs have an NPU value of 97% [3]. Cereals dearth the amino acids for humans which is most prime such as lysine, threonine, the sulphur-bearing amino acids (methionine and cysteine) and at times tryptophan. Eggs and poultry meat being well-heeled with all-important amino acids, they are inexpensive and widely available comparatively. Hence it is increasingly seen as less of a luxury product and more as a daily staple. And above all, there are no major social taboos on their consumption. Thus, poultry has a greater scope in developing countries.

The genetics of selective breeding in poultry industries have driven to impressive changes in yield, efficiency and product quality, but characteristics linked to health outcomes have not been so amenable. Though, genetic selection methods employed continuously refine production parameters, hand in hand with the state of art production facilities and protocols [4]. Genome editing is used to increase the numbers of animals in the breeding herd that carries beneficial genome variants. This makes it possible to conserve valuable genome variants that would otherwise be lost because they lean to be inherited in concert with harmful variants. Thus, genome editing is expected to have a wider perspective in bringing up more beneficial traits in livestock population for productivity, health, fertility, and safety [5, 6].

Current-genome-editing tools have been successfully adapted to all species including zebrafish [7], humans [8], mice [9], rats [10], monkeys [11], pigs [12], cattle, sheep [13], goats [14] and others. This technology potentiates geneticists and medical researchers to edit portions of the genome
by adding, deleting, or altering segments of the DNA sequence. Due to its distinct reproductive biology, poultry needs very specific techniques to achieve heritably (germline) edited traits. By employing genome editing tools, it is expected that it will significantly impact the value and future development of poultry. In addition, precise editing in the endogenous genome, without incorporating foreign DNA, may become a modern breeding tool for the development of genetically modified organisms for human consumption. In this review, an overview of genome-editing technology for the enhancement of poultry products will be briefed.

Genome editing

The introduction of designer nucleases like zinc–finger nucleases (ZFNs) and transcription activation–like effector nucleases (TALENs) brings about the site-specific DNA cleavage by coupling an adjustable DNA binding domain with a FokI endonuclease catalytic domain, which is then repaired via homology-driven genome modifications [15, 16]. With the advent of genome editing technology, the introduction of mutations without leaving any technology-associated footprint resulting in modifications of the genome which are insensible from natural mutations. A new genome-editing tool emerged recently that promises even greater simplicity, flexibility, and efficiency and all at a minimal cost, as compared to ZFNs and TALENs. This recently evolved tool is the clustered regularly interspersed short palindromic repeat (CRISPR) - CRISPR-associated nuclease 9 (Cas9), it is an RNA-guided nuclease system [15] in adverse with ZFNs and TALENs, which need protein engineering to customize their DNA binding properties. The CRISPR-Cas9 system makes use of a universal monomeric nuclease (Cas9) that is guided by sequence complementarity of a small, so-called guide RNA, to its specific target site where it initiates a DNA double-strand break making it very simple to design. CRISPR/Cas9 enzymes can have different target specificity, by including a different oligonucleotide in the guide RNA expression construct specific for that target site. Added to its specificity, they also facilitate simultaneous targeting of multiple targets, which requires only the addition of guide RNAs directed to different target sites within the genome [17].

The base-editors

The usage of CRISPR/Cas9 to generate gene knockouts is workable and abrupt in transformable eukaryotic species [18, 19]. Even so, making precise single-base changes or substitutions (base editing) remains hard, mainly because HDR is highly feckless across eukaryotes [20, 21]. In dissimilitude with DSB–HDR-mediated genome editing, base editing concerns the site-specific modification of the DNA base accompanying manipulation of the DNA repair machinery to elude trusted repair of the modified base [22]. These base editors are chimeric proteins laid back of a DNA targeting module and a catalytic domain handy of deaminating a cytidine or adenine base. Thereby restricts the creation of insertions and deletions (indels) at target and off-target sites as there is no pre-requisite to generate DSBs to edit DNA bases [23, 24].

Cytidine deaminase-based DNA base editors

Cytidine deaminases have been set forth by two sets (Liu and Akihiko groups) and these enzymes catalyze the transfiguration of cytosine into uracil [25, 24, 29]. For which, the Liu group developed the first base editor in 2016 [23]. In the base-editing system, APOBEC, guided by dCas9, deaminates a particular cytidine to uracil; the resulting U-G mismatches are corrected by repair mechanisms to form U-A base pairs, and followed by T-A base pairs. Such base editors can therefore be used to fabricate C-to-T point mutations. Following the basic editing of the DNA molecule, a DNA lesion is formed that can be repaired and substituted with thymidine during DNA replication; base excision repair eliminates the uridine and enables the integration of any base and mismatch repair by trans-lesion synthesis and increases mutations at nearby nucleotides through an error-prone polymerase [26]. Later, the addition of uracil DNA glycosylase (UGI) established another base editor, BE2 [27]. The incorporation of UGI impedes the base excision repair pathway. The Cytidine deaminase changes C into U and thereafter uracil DNA glycosylase can perform error-free repair, changing the U into the wild-type sequence. Another substantial improvement of the system was reached by the instigation of BE3, [28, 29, 30, 31, 32] it is comprised of dCas9-pmNDA and UGI, homogenous to target-AID and has successfully resulted in a six-fold increase in the base editing of both mammalian and plant cells [23, 25]. It was suggested that the activity of UGI is consequential for inhibiting base excision repair and improving the base-editing efficiency, hence incorporating two UGI molecules one at the C- and other at the N- termini. BE4 was developed [33]. But the option of the base editor is bound to the accessibility of a PAM sequence, the residence of a C nucleotide relative to the PAM, how much indel generation can be indulged, and how the base-editor reagents are consigned to the target cell [26].

ADAR2-based RNA base editors

RNA base editors have been created recently, and are used to modulate biological processes. Different mechanisms, including ADAR2, deaminate adenosine to inosine, which the translational machinery reads as guanine, have been utilized for RNA editing [34]. Interestingly, an RNA-guided ribonuclease system using CRISPR/Cas13 has been freshly reprocessed to edit mRNA sequences and also to change adenosine to inosine by utilizing a catalytically inactive Cas13 protein and the deaminase activity of ADAR2 which is cited as RNA editing for programmable adenosine to inosine replacement (REPAIR) [34]. The prime edge of using RNA editing systems is that permanent change in the genome can be avoided, and therefore, it is regarded as more superior than DNA base editing.

Genome-editing in livestock

Genetic improvement yields a speedy, inexpensive, salubrious, and more-structured animal production, with minimal influence on the environment. Application of managed selective breeding programs on many of the domesticated farm animals has supplemented in notable improvements in their productivity. For instance, in pigs it issued in 50% larger litter size, 37% shoot up of lean pork meat and also aided in two-fold increase in lean pork per kg feed intake; and 67% increase in milk production in case of cattle; finally, in our topic of interest i.e. in chickens, the days to obtain 2 kg body mass had turned down from 100 days to 40, evident increase in breast meat proportion from 12 to 20%, the feed conversion ratio had been cut in half, eggs per year augmented by 30% and eggs per ton of feed boosted by 80% since 1960s to 2005 [33]. But these selective breeding techniques is entirely based on the genetic variation within the species or population of interest, and new variants emerging through de novo mutations. At the minute, transgenic and genome-editing technologies furnish novel slots for genetic improvement by suggesting well known beneficial alleles or
shaping beneficial alleles without any consequences of the linkage drag associated with traditional admittance. These genetic modification techniques when setting side by side, transgenesis relies on incorporating transgenes to enhance the traits in livestock more productively whereas genome editing offers an opportunity to create more specific and precise alterations to the genome of an animal for the same.

To date, genome editing has been done successfully for a few traits in various livestock species which is summarized in Table 1.

Table 1: Genome-editing technology in various species

<table>
<thead>
<tr>
<th>Trait</th>
<th>Species</th>
<th>Genome-editing target</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased muscle growth (double-muscle phenotype)</td>
<td>Cow</td>
<td>Myostatin (GDF8)</td>
<td>[13]</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>Myostatin (GDF8)</td>
<td>[16]</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>Myostatin (GDF8)</td>
<td>[17]</td>
</tr>
<tr>
<td></td>
<td>Channel catfish</td>
<td>Myostatin (GDF8)</td>
<td>[18]</td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td>Myostatin (GDF8)</td>
<td>[19, 20, 21, 22, 23, 24, 25, 26]</td>
</tr>
<tr>
<td>Hornless (poll)</td>
<td>Cow</td>
<td>Pc POLLED</td>
<td>[20]</td>
</tr>
<tr>
<td>Boretaint</td>
<td>Pig</td>
<td>KISS1R</td>
<td>[21]</td>
</tr>
<tr>
<td>Sterility</td>
<td>Salmon</td>
<td>Dead end protein (dnd)</td>
<td>[22]</td>
</tr>
<tr>
<td>Sterility/surrogate hosts</td>
<td>Pig</td>
<td>Nanos 2</td>
<td>[23]</td>
</tr>
<tr>
<td>PRRSV resistance</td>
<td>Pig</td>
<td>CD163</td>
<td>[24, 25, 26, 27]</td>
</tr>
<tr>
<td>ASFV resilience</td>
<td>Pig</td>
<td>RELA</td>
<td>[28, 29]</td>
</tr>
<tr>
<td>Mannheimia (Pasteurella) hemolytica resilience</td>
<td>Cow</td>
<td>CD18</td>
<td>[30]</td>
</tr>
<tr>
<td>Bovine tuberculosis resilience</td>
<td>Cow</td>
<td>NRAMP1</td>
<td>[31]</td>
</tr>
<tr>
<td>Xenotransplantation (removal of endogenous retroviruses)</td>
<td>Pig</td>
<td>Porcine endogenous retrovirus genes</td>
<td>[32, 33]</td>
</tr>
</tbody>
</table>

Genome-editing in poultry

Genetic modification of poultry was not that easy in comparison with those of other livestock as the avian egg possess very unique physiology from a mammalian oocyte. This made it impractical to isolate and transfer a chicken yolk. But then, Gandhi et al. (2017) came up with an approach of ovo electroporation of editing reagents, despite that the electroporation resulted in mosaicism with editing limited to a subset of cells as the chicken embryo is already developed at a greater distance when an egg is laid compared with a zygote [59, 60]. As a result, it was unlikely to generate edited birds using this approach. Later came an alternative strategy known as sperm transfection-assisted gene editing (STAGE) which uses the sperms that are being lipofected with editing reagents before artificial insemination [61]. But ultimately it was the advancements in chicken stem cell technology that showed the greatest potential for chicken genome editing. In par with fibroblast cells of mammals, the primordial germ cells (stem cells that later on develops into germ cells) can be isolated from the blood of developing chicks in-ovo and then could be cultured in vitro. Through an opening in the eggshell, the chick embryo is examined which must be sealed again until the chick hatches. Several groups were successful in demonstrating this genome editing in primordial germ cells [62, 63] and among these one group had led to modified birds [64]. Fig 1 illustrates the different methods of genome editing employed in poultry.
Genome-editing in poultry, can brought about in three-ways: byelectroporation in ovo, by sperm lipofection or by isolation and editing of primordial germ-cells. In all these methods, the resultant will be heterozygous/mosaic which must be breed to generate homozygous birds.

Applications

By the application of these evolving technology, it was made possible to generate the:

Disease resistance in chickens

For the production of disease resistance phenotypes, that can be easily adapted in the avian system Lee et al. (2017) conducted genome editing on chicken DF-1 fibroblasts which aided in identifying the roles of chNHE1 in viral interaction [65].

Sterility in chickens

Similarly, Taylor et al. (2017) demonstrated the utility of TALENs in genome targeting of poultry [63]. It was known that the Chicken vasa homolog (CVH) (DDX4) is hypothesized to be a maternal instigation for the genesis of the germ cell lineage as it indicates the chicken germ cell lineage at the advance stages of developing embryo. As a consequence, it was expected that vasa play a vital bit in the oogenesis. Thus, TALENs were used to knock out the DDX4 (CVH (vasa)) locus in chickens to demonstrate systematic targeting of genes crucial for the development of the germ cell lineage. As expected, female chickens were sterile and carried no sensible follicles post-hatch. Upon examining it published that the germ cell lineage of early embryos was originally framed but female PGCs were eventually lost through meiosis. Thus the usage of TALENs in genome targeting of poultry and the preserved activity of the DDX4 gene in germ cell development and oogenesis was expressed successfully [50].

Knock-ins using GE tools

In the advent of generating chickens for a better ectopic gene expression, Oishi et al. (2018) knocked in hINF-β into the chicken ovalbumin locus using CRISPR/Cas9 procedure for the production of hINF-β in egg white. And their results uncovered that this transgene insertion using the gene editing tool, has culminated a stable expression of an exogenous protein which was regarded highly significant and befitting for the industrial applications [67].

Future perspectives of genome editing in poultry

Genome editing in chickens is now entering the golden age as it is already in advance in mammals, particularly mice and pigs. The recent generation of Cas9-expressing animals will be a powerful tool for studying biological processes [68]. Similar applications in chickens can be more beneficial and may be utilized in the future to bring the functions of unknown genes into the light. Therapeutic applications using human monoclonal antibodies derived from genetically engineered chickens can be beneficial over in vitro approaches that lack affinity maturation [69]. Antibodies in chicken eggs are also used as an economical and stress-free method for the synthesis of specific antibodies [70]. Chicken eggs can also be used to manufacture specific proteins [71, 72] as this can improve the digestibility of sugar complexes in feed. Due to its simplicity of design and implementation combined with high performance, newly developed gene-editing technologies give many advantages [73]. So soon, we may also obtain new breeds of chickens that are resistant to specific pathogens. Thus by spending more efforts for genome-editing technologies in poultry breeding will probably improve its welfare. Table 2 lists the genetic engineering works done so far in poultry species.

<table>
<thead>
<tr>
<th>Research on</th>
<th>Genetic engineering work done</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transgenic chicken carrying a benign subgroup A leucosis virus</td>
<td>Introduction of alv6 into the progeny of dams that congenitally transmit ALV to their progeny</td>
<td>[74]</td>
</tr>
<tr>
<td>Transgenic chickens expressing active beta-lactamase in the egg white</td>
<td>Inserted a transgene encoding a secreted protein, beta-lactamase, under the control of the ubiquitous cytomegalovirus (CMV) promoter</td>
<td>[75]</td>
</tr>
<tr>
<td>eGFP expressing chickens</td>
<td>Germline transmission in the embryonic tissue that expresses eGFP uniformly using embryos sired by a heterozygous male</td>
<td>[76]</td>
</tr>
<tr>
<td>Hens specifically expressing therapeutic proteins in the oviduct</td>
<td>Use of lentiviral vectors to deliver transgene constructs comprising regulatory sequences from the ovalbumin gene designed to direct synthesis of associated therapeutic proteins to the oviduct</td>
<td>[77]</td>
</tr>
<tr>
<td>Production of transgenic chickens expressing a tetracycline-inducible eGFP</td>
<td>Showed that a tetracycline-inducible expression system in transgenic animals might be a promising solution to minimize physiological disturbances caused by the transgene</td>
<td>[78]</td>
</tr>
<tr>
<td>Short-hairpin RNA against Influenza expressing chickens</td>
<td>Generated transgenic chickens expressing a short-hairpin RNA designed to function as a decoy that inhibits and blocks influenza virus polymerase and thus interfering with virus propagation</td>
<td>[79]</td>
</tr>
<tr>
<td>Transgenic chickens expressing human extracellular superoxide dismutase</td>
<td>The hEC-SOD protein was expressed in the egg white of transgenic hens and showed antioxidant activity highlighting the potential of the chicken for production of biologically active proteins in egg white</td>
<td>[80]</td>
</tr>
<tr>
<td>Immunoglobulin heavy chain (JH0) KO chickens</td>
<td>Targeted the joining (J) gene segment of the chicken Ig heavy chain gene by homologous recombination in primordial germ cells. In homozygous knockouts, Ig heavy chain production is eliminated and no antibody response is elicited on immunization</td>
<td>[81]</td>
</tr>
<tr>
<td>Transgenic chickens expressing the human urokinase type-plasminogen activator</td>
<td>Explored the feasibility of using chickens as a bioreactor for producing human urokinase-type plasminogen activator(huPA) that can be used to treat thrombolytic disorders</td>
<td>[82]</td>
</tr>
<tr>
<td>CSF1R- receptor reporter chickens</td>
<td>Transgenic chickens, in which the reporter genes are expressed in a specific immune cell lineage based upon control elements of the colony stimulating factor 1 receptor locus</td>
<td>[83]</td>
</tr>
</tbody>
</table>
Conclusion
The latest interest prevailing in the poultry breeding is the genome editing technology, which is awaited to create a large impact on the overall performance of the birds by making a small change. It has a massive potential to improve the economic traits of birds and besides can also generate disease-resistant birds which can promise more benefits to the poultry farmers. Apart from these, it can also do beneficial by manipulating traits like heat tolerance and osteoporosis in older laying hens. Since commercial production birds are the products of 3 or 4 lines, gene-edited changes would need to be incorporated into each of the elite lines that contribute to the final commercial cross, thus increasing costs by 3-4 fold. Moreover, the same edits can be made in the same line in multiple birds that can decrease the inbreeding problems. Thus the genome editing technology will greatly increase the understanding of basic biology, determination of gene function, and the effect of specific variation and also for identifying genetic control pathways. This technology is known to have a profound value to gain immense scientific knowledge of genetics, gene function, and genetic inter-relationships. The commercial poultry industry is thus expected to participate at the basic scientific level and help in supporting the development of this technology.

Authors’ contributions: All authors have contributed equally in production of this manuscript

Acknowledgments
The authors would wish to acknowledge financial support provided by ICAR, New Delhi in terms of fellowships to scholars. Authors also wish to acknowledge Directors of ICAR-IVRI, Bareilly for providing infrastructural facility to review this study.

Competing interests
The authors declare that they have no competing interests.

References

47. Sonstegard TS, Carlson D, Lancto C, Fahrenkrug SC.

