Effect of magnetic field on eggs of rice moth, *Corcyra cephalonica* (Stainton)

Punam Madavi, Vijay Kumar Adimulam, Vrunda Thakare and Dr. SK Aherkar

Abstract

Experiment conducted during 2018-19, to determine the effect of magnetic field on *Corcyra cephalonica* eggs. Exposure of *Corcyra* eggs to magnetic field for gradually increasing time durations. Observations were recorded on *Corcyra* eggs hatching per cent on 4th, 5th and 6th day of magnetic treatment. The result showed that, exposure of *Corcyra* egg for 2 h to 2½ hour increases eggs hatching which will be useful in the laboratory for rearing of *Corcyra* eggs, whereas as the time of exposure to magnetic field increases then there is gradual decrease in egg hatching per cent. At 24 hour of magnetic treatment, it reduces the egg hatching of *Corcyra*. This can be implicated in storage structure to control the infestation of *Corcyra* in store grains.

Keywords: *Corcyra cephalonica*, magnetic field, complete randomized design

1. Introduction

Corcyra cephalonica (Stainton) popularly known as the “Rice meal moth” or the “Flour moth”, belongs to Family Pyralidae of Order Lepidoptera. It is one of the important stored grain pests in Asia, Africa, North America and Europe. In India Rice moth is utilized in various biocontrol laboratories and developmental units. *Corcyra* production is cheaper and the cost required to multiplying the parasite and predator is less, as the parasitized egg and larval stages can be easily released with bio agents in the field to control crop pest (Kumar and Murthy, 2000).

Recent research emphasizes the mass rearing of bio control agents for augmentation and field releases. Bio-agents occupy a premier position in the crop protection sector and constitute an important component of IPM. Present study is to evaluate the influence of magnetic field on *Corcyra* eggs along with the information about performance on non-magnetic field treatments. Any positive and negative effect if observed will help to enhance or reduce the production of *Corcyra* eggs in the laboratory and will help to develop the strategies for mass multiplication of *Trichogramma*.

2. Materials and method

The present experiment was conducted at laboratory of Entomology, Dr. PDKV Akola, during August 2018-19. The experiment was carried out in Completely Randomized Design (CRD) with fourteen different treatments and four repetitions with objectives to know the effect of exposure of magnetic field on *Corcyra* eggs. The materials used and the method followed to carry out these investigations are described below.

Rearing of *Corcyra* in the laboratory

Corcyra eggs were produced in the laboratory on the most popular diet to rear *Corcyra* for production of *Corcyra* eggs. Diet included 10 kg good quality Sorghum to which 400 gm of crushed groundnut, 20 gm of Yeast powder, 20 gm wettable sulphur, 0.5 gm Streptomycin sulphate in 100 ml of distilled water (Gandhi., 2014)[5]. The eggs produced in the laboratory every day were used for the experiment. Eggs laid by the female within 24 hrs were collected from the egg laying chamber. Collected eggs were cleaned by removing the scales and other body parts of *Corcyra*. After cleaning the *Corcyra* eggs, whenever required they were used for preparation of egg-card.
Egg card

Corcyra egg card prepared by using yellow colored card sheet on which thin layer of glue was applied then freshly laid _Corcyra_ eggs were evenly sprinkled with the help of hair brush. Each card exposed to the magnetic field for different duration of time as per treatment and replication. Magnetic field is created by fixing permanent magnet around the box. The magnet were fixed in such a way that the North Pole was facing towards the _Corcyra_ eggs kept in the containers. _Corcyra_ egg hatching starts from fourth day. Observations were recorded on per cent _Corcyra_ egg hatching at 4th day, 5th day and 6th day of egg laying.

Treatments

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Treatment</th>
<th>Treatment details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T<sub>0</sub></td>
<td>Zero Hour</td>
</tr>
<tr>
<td>2</td>
<td>T<sub>1</sub></td>
<td>15 min</td>
</tr>
<tr>
<td>3</td>
<td>T<sub>2</sub></td>
<td>30 min</td>
</tr>
<tr>
<td>4</td>
<td>T<sub>3</sub></td>
<td>45 min</td>
</tr>
<tr>
<td>5</td>
<td>T<sub>4</sub></td>
<td>1 Hour</td>
</tr>
<tr>
<td>6</td>
<td>T<sub>5</sub></td>
<td>1½ Hour</td>
</tr>
<tr>
<td>7</td>
<td>T<sub>6</sub></td>
<td>2 Hour</td>
</tr>
<tr>
<td>8</td>
<td>T<sub>7</sub></td>
<td>2½ Hour</td>
</tr>
<tr>
<td>9</td>
<td>T<sub>8</sub></td>
<td>3 Hour</td>
</tr>
<tr>
<td>10</td>
<td>T<sub>9</sub></td>
<td>4 Hour</td>
</tr>
<tr>
<td>11</td>
<td>T<sub>10</sub></td>
<td>5 Hour</td>
</tr>
<tr>
<td>12</td>
<td>T<sub>11</sub></td>
<td>6 Hour</td>
</tr>
<tr>
<td>13</td>
<td>T<sub>12</sub></td>
<td>12 Hour</td>
</tr>
<tr>
<td>14</td>
<td>T<sub>13</sub></td>
<td>24 Hour</td>
</tr>
</tbody>
</table>

The data collected on egg hatching were subjected to the statistical analysis, for the test of significance after appropriate transformations [6].

4. Results and Discussion

Effect of magnetic field on _Corcyra_ egg hatching at 4th, 5th and 6th day of magnetic treatment

Data recorded on _Corcyra_ egg hatching was presented in table no. 2. Magnetic field had significant impact on egg hatching on:

Fourth day

Maximum hatching percentage of _Corcyra_ on fourth day over all treatments was observed in the treatment T₇ (2½ hrs) recording 99.68 % and was found at par with treatment T₆ (2 hrs) recording 99.18 %. In treatment T₀ control (0 hrs) recording 97.19 % and was significantly low over above two treatments but was significantly superior to rest of all treatments. Significantly minimum 52.54 and 55.89 per cent egg hatching over all the treatments was recorded in T₁₃ (24 hrs) and T₁₂ (12 hrs), respectively.

In next group of treatments, treatment T₅ (1½ hrs), T₄ (1 hrs), T₃ (45 min) recorded 93.98 %, 92.95 %, 92.29 % and were at par with each other. Latter two treatment T₂ (30 min) and T₁ (15 min) were also at par with each other recording 90.98 % and 90.77 % respectively. In group of treatments T₀ (3 hrs), T₉ (4 hrs), T₁₀ (5 hrs) were at par with each other recording 68.79 %, 67.18 % and 66.07 %, respectively. However all these treatments were significantly superior to treatment T₁₁ (6 hrs) in which 62.01 % was recorded. (fig. no.1)

Fifth day

Magnetic field had significant impact on _Corcyra_ egg hatching. Significantly maximum per cent egg hatching of _Corcyra_ on fifth day over all treatments was observed in T₇ (2½ hrs) recording 99.24 % which was at par with treatment T₆ (2 hrs) recording 98.89 %. Both the treatment were significantly superior to treatment T₀ control (0 hrs) recording 95.74 % but was significantly superior over rest of all the treatments.

Significantly minimum 51.43 % and 54.02 % over all the treatments was recorded in treatment T₁₃ (24 hrs) and T₁₂ (12 hrs), respectively and were at par with each other. In next group of treatments, treatment T₅ (1½ hrs), T₄ (1 hrs), T₃ (45 min) recording 92.05 %, 91.37 % and 90.98 % and were at par with each other. Latter two treatments were also at par with each other. Treatment T₇ (30 min) recording 89.19 % and was at par with treatment T₁ (15 min) with 88.29 %, the group of treatments T₈ (3 hrs), T₉ (4 hrs), and T₁₀ (5 hrs) recorded 67.66 %, 66.87 %, and 64.23 %, respectively. Latter treatment T₁₀ was at par with T₁₁ (6 hrs) 61.77 % was recorded. (Fig. no. 2)

Sixth day

Magnetic field had significant effect on _Corcyra_ eggs. Significantly maximum number of _Corcyra_ egg hatching on sixth day was observed in the treatment T₇ (2½ hrs) 96.19 % was at par with treatment T₆ (2 hrs) 95.47 %, both the treatments were significantly superior over rest of all treatments. However latter treatment T₅ was also at par with treatment T₀ control (92.99 %) and T₃ (1½ hrs) in which 91.20 % was recorded. Significantly least egg hatching over all the treatments 47.83 % and 50.54 % was recorded in treatment T₁₃ (24 hrs) and T₁₂ (12 hrs).
In present study, From above recorded data at fourth day, fifth day and sixth day of magnetic treatment, it was observed that there was increase in the hatching percentage of Corcyra eggs when the eggs were kept for 2½ hrs in magnetic field and it was significantly more than control. Indicating that if we kept Corcyra eggs for 2½ hrs in magnetic field had positive effect and if the durations of magnetic field treatment are extended then there is reduction in hatching percentage of Corcyra eggs indicating that magnetic field plays important role in enhancing or reducing the hatching percentage of Corcyra eggs. This finding can be explored in rearing technique to get maximum egg hatching by exposing Corcyra eggs for 2 to 2½ hrs magnetic field. Also the magnetic field can be used for managing Corcyra by keeping the stored grain in magnetic field. This finding of present investigation are in close conformity with the finding of Chandrawanshi et al., (2017)\(^1\) who observed that, keeping of Corcyra in Magnetic field for 2 hrs had positive effect and more than 4 hrs had negative effect on the biological parameter of Corcyra under study. Gandhi (2014)\(^1\)and Danagat (2016)\(^1\) reported that magnetic field for 12 hrs and 24 hrs which were longest duration than the rest of the treatments had negative effect on growth and development of Corcyra. Pandir et al., (2013)\(^1\) has reported that long term magnetic fields exposure to eggs of mediterranean flour moth (Ephesia kuehniella) for 3, 6, 12, 24, 48 and 72 hrs magnetic treatment had adverse effect on larval emergence and there was increased in egg mortality. These finding are in line with the present findings and support to present finding.

5. Conclusion

Magnetic field plays important role in enhancing or reducing the hatching percentage of Corcyra eggs. This finding can be explored in rearing technique to get maximum egg hatching by exposing Corcyra eggs for 2 to 2½ hrs magnetic field. Also the magnetic field can be used as non-chemical control technology for managing Corcyra by keeping the stored grain in magnetic field.

6. Acknowledgement

The authors gratefully acknowledge, Biocontrol unit, Department of Entomology, Dr. PDKV, Akola, for providing eggs of Corcyra and necessary facilities during the course of my study.

7. References