Impact of weather factors on population dynamics of *Anosia chrysippus* Infesting *Calotropis procera*, A Medicinal plant in Jammu region of Jammu and Kashmir, India

Madhu Sudan, Pervaiz Ahmed Pervaiz, Janak Singh Tara

Abstract

The impact of weather factors on seasonal abundance and population dynamics of *Anosia chrysippus*, a serious pest of *Calotropis procera* in Jammu region was studied during August, 2010 to July, 2012. The pest remained active throughout the year and attained two population peaks first in the month of October (3.04 larvae/twig) and second during April (4.94 larvae/twig). Correlation studies revealed a significant positive correlation between increase in temperature and pest infestation (R=0.720; \(P \leq 0.01 \)). All other weather factors viz. average relative humidity and average rainfall had a negative correlation with incidence of the pest. The regression model developed indicated that the variation in pest population is strongly influenced by maximum temperature (\(R^2=0.519 \)) and average relative humidity (\(R^2=0.594 \)). The results indicated that weather parameters played an important role in the population build-up of the pest.

Keywords: Anosia chrysippus, Correlation, Infestation, Humidity, Population, Pest.

1. Introduction

Anosia (*Danaus*) *chrysippus* (L) belonging to family Nymphalidae is one of the devastating pests of a commercially and medicinally important plant species, *Calotropis procera* (Ait.) R. Br. (Asclepidaceae) in various locations of Jammu region. The larval stages of the pest inhabit apical portion of the shoot feeding on the soft tender leaves, buds and flowers of *C. procera* leading to their destruction, resulting in stunted growth. The pest is already reported from different host plants in different parts of India like Assam [1], Uttar Pradesh [2, 3], Andhra Pradesh [4-6], Rajasthan [7], Jammu and Kashmir [8, 9] and the world like England [10], Iran [11] and Spain [12, 13].

The population build-up and infestation of *A chrysippus* is greatly influenced by weather parameters like temperature, relative humidity and rainfall. The variations in weather parameters exert a profound influence in the fluctuations of insect numbers and also have a dominating effect on the survival, development and reproductive potential of the pest. Some preliminary studies on the population build-up of this pest on *C procera* in Rajasthan Desert and Gorakhpur (U.P.) are carried out by [7] and [14]. While [15] reported that temperature influences the duration of larval instars and the overall developmental time of *Danaus chrysippus*.

The aim of this work is to study, the seasonal abundance and to correlate the important weather factors viz, temperature, relative humidity and rainfall with the pest population so as to estimate the role of weather and to make an effort to evolve an appropriate and timely management strategies for *A chrysippus* in Jammu and Kashmir state of India.

2. Materials and Methods

2.1 Study Location

The study was conducted from August 2010 to July 2012 under field conditions at Solki station (District Rajouri) of Jammu region. The station experiences mild summer, fair monsoon during summer and relatively wet winter. *C procera* plants grow well in the areas having soil deposition along the dry banks of rivers and streams.

2.2 Sampling

The sampling was done using the methodology as described by [16]. The field was divided into five blocks and a total of 50 branches were considered from 10 randomly selected plants.
The instability of the observed insect population could be the result of weather fluctuations prevailing over the period under study. A highly significant positive correlation was observed between the larval population density and maximum temperature ($R = 0.719; P \leq 0.01$) in the year 2010-2011 and $R = 0.715; P \leq 0.01$ in the year 2011-2012. The analysis also revealed a highly significant positive correlation between the pest infestation and average temperature ($R = 0.716; P \leq 0.01$ in 2010-2011 and $R = 0.711; P \leq 0.01$ in 2011-2012). However, a significant positive correlation was recorded between the infestation and minimum temperature ($R = 0.698; P \leq 0.05$ in 2010-2011 and $R = 0.697; P \leq 0.05$ in 2011-2012) recorded from the area under study (Table-2). Similarly, correlation studies were worked out between infestation of the pest and average relative humidity and average rainfall recorded during different months for a period of two consecutive years. A highly significant negative correlation was recorded between the infestation and average relative humidity ($R = -0.708; P \leq 0.01$ in 2010-2011 and $R = -0.759; P \leq 0.01$ in 2011-2012) and an insignificant negative correlation with average rainfall ($R = -0.177; P = 0.582$ in 2010-2011 and $R = -0.093; P = 0.773$ in 2011-2012). The results of the analysis indicated that weather parameters have greatest influence on pest population.
importance upon the population fluctuation of the pest. Analysis of correlation between pooled larval population of *A. chrysippus* and different abiotic factors (Table-2) also revealed that a highly significant positive correlation existed with maximum temperature \((R= 0.720; P \leq 0.01)\) and average temperature \((R= 0.716; P \leq 0.01)\) whereas, minimum temperature \((R= 0.696; P \leq 0.05)\) had a significant positive correlation towards the larval population. However, a highly significant and negative correlation with average relative humidity \((R= -0.771; P \leq 0.01)\) and an insignificant negative correlation was noted with average rainfall \((R= -0.123; P \leq 0.703)\) with the larval population.

3.3 Regression Model

Linear regression analysis revealed that weather parameters have highly significant effects \((P \leq 0.01)\) on the population densities of the pest confirming the results of correlation analysis. The stepwise regression analysis of two consecutive year study to investigate the abiotic factors contributed the most to the variance of the leaf roller population has been presented in the Table-3. Regression analysis showed that the maximum and average temperature contributed highly and positively significant to the pest population fluctuation (51% in the two years study). Similarly, minimum temperature significantly and positively contributed to the fluctuations in the pest population (48% in the two years study). Analysis also showed that average relative humidity is highly and negatively significant to the variations in the population build-up (50%, 56% and 59%) for the year 2010-2012, 2011-2012 and 2010-2012 respectively.

Multiple regression models revealed that average temperature had a positive association towards the larval population during the two consecutive years. However, average relative humidity showed a positive association during the year August, 2010 to July, 2011 and a negative association during the year August, 2011 to July, 2012 towards the population. On the contrary, average rainfall had a negative association towards the pest population. The coefficient of determination \((R^2)\) values were 0.762, 0.824 and 0.792 for the year 2010-2012, 2011-2012 and 2010-2012 respectively, thereby indicating that as much as 76%, 82% and 79% variation in the larval population of *A. chrysippus* was caused by cumulative meteorological factors viz. average temperature, average relative humidity and average rainfall affecting the *C procera* plantations.

Table 3: Regression analysis of the population of *Anosia chrysippus* with weather parameters for two consecutive years (August, 2010 to July, 2012).

<table>
<thead>
<tr>
<th>Years</th>
<th>Maximum Temperature ((X_1))</th>
<th>Minimum Temperature ((X_2))</th>
<th>Average Temperature ((X_3))</th>
<th>Average Rel. Humidity ((X_4))</th>
<th>Average Rainfall ((X_5))</th>
<th>Multivariate Factors ((X_3, X_4, X_5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-11</td>
<td>(Y = 0.115 + 0.059X_1)</td>
<td>(R^2 = 0.518**)</td>
<td>(Y = 0.823 + 0.063X_3)</td>
<td>(R^2 = 0.487**)</td>
<td>(Y = 3.207 - 0.024X_4)</td>
<td>(R^2 = 0.502**)</td>
</tr>
<tr>
<td>2011-12</td>
<td>(Y = 0.403 + 0.046X_1)</td>
<td>(R^2 = 0.512**)</td>
<td>(Y = 0.929 + 0.060X_3)</td>
<td>(R^2 = 0.485**)</td>
<td>(Y = 3.296 - 0.025X_4)</td>
<td>(R^2 = 0.567**)</td>
</tr>
<tr>
<td>Pooled</td>
<td>(Y = -0.128 + 0.053X_1)</td>
<td>(R^2 = 0.519**)</td>
<td>(Y = 0.872 + 0.062X_3)</td>
<td>(R^2 = 0.485**)</td>
<td>(Y = 0.455 + 0.058X_4)</td>
<td>(R^2 = 0.512**)</td>
</tr>
</tbody>
</table>

Notes: ** Significant at 0.01 level; *Significant at 0.05 level**

4. **Discussions**

During monsoon period i.e. July to August, a decrease in the population was noticed possibly due to the mortality of larvae because of heavy rainfall. Subsequently, sharp and sudden reduction in number of larvae was noticed in winter months perhaps due to pupation and emergence of the pest. However, [7] observed that the larvae were present on the shrubs throughout the monsoon season, from July to October with their peak larval population recorded in August (42.5 to 112.5/5 plants) and subsequently sharp and sudden reduction in number (7.5-85/5 plants) during September and October in Rajasthan Desert. [14] Observed that the population of the pest was abundant in first week of July to third week of August after which the pest showed a gradual decrease on *C procera* in Gorakhpur (U.P.). On the other hand, [17] reported that the population of *S pandurus* on *C gigantea* increases from the first week of March and declines in the latter half of October; the maximum population build-up being recorded during April to June (hottest season of the year in south India). Correlation data of the present investigation depicted that there was a linear relationship of increasing atmospheric temperature and decreasing relative humidity with increased pest incidence. The significant correlation found between the pest infestation and abiotic factors definitely help to develop a predictive model by which the outbreak of this pest could be known in advance so that timely control of this pest can be taken up to curtail the problem. However, [17] recorded that maximum temperature \((R= 0.848; P \leq 0.01)\) showed significant positive correlation and favours the population build-up of *S pandurus* on *C gigantea* whereas other variables such as minimum temperature, maximum and minimum relative humidity were neither consistent nor they were significant statistically.

In the present study, it was observed that the severity of infestation of *A. chrysippus* on *C procera* was more pronounced on spring flush (April) rather than on autumn.
flush (October). The peak incidence of pest occurs during September-October and April-May thereby affecting considerable damage of about 39% during October and 62% during April respectively with mean percentage infestation of 30.59%. The percentage influence of the climatic factors upon the population fluctuation of S. pandurus on C. gigantea was 81% as calculated by [17]. The regression model indicated the strong influence of maximum temperature, average temperature and average relative humidity on variation in pest population on this particular medicinal plant.

The model can be used to predict the initiation and peak incidence of the pest attack which will serve as a database for stakeholders to adopt effective protection measures at the appropriate time. [18] Observed that models for temperature-dependent development of insect pests have been widely used as tools to improve the efficiency of pest management. Forecasting the peak abundance of pest in advance helps in their timely management. The correlation and multiple regression analysis clearly depicted the importance of weather parameters in the incidence of pest.

5. Conclusion
From the findings of present study, it is evident that there were two population peaks in the pest population and was mainly affected by the weather factors and also by the availability of fresh vegetative flush.

6. Acknowledgments
The authors are grateful to Dr. V.V. Ramamurthy, principal scientist, IARI, New Delhi for identification of species. We are also thankful to the Head of Department, University of Jammu for providing the Laboratory and other necessary facilities for performing the experiments. The authors have no conflict of interest.

7. References
18. Rahmathulla VK, Kumar CMK, Angadi BS, Sivaprasad V. Association of climatic factors on population dynamics of Leaf roller, Diaphania pulverulentalis Hampson (Lepidoptera: Pyralidae) in mulberry plantations of sericulture seed farm. Psyche 2012. doi.org/10.1155/2012/186214.