

E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2016; 4(1): 378-385 © 2016 JEZS Received: 23-11-2015 Accepted: 24-12-2015

### K Mandal

Zonal Silkworm Seed Organization, NSSO, Central Silk Board, Malda, West Bengal.

#### SM Moorthy

Central Sericultural Research and Training Institute, Srirampura, Mysore -570 008, Karnataka.

Correspondence SM Moorthy Central Sericultural Research and Training Institute, Srirampura, Mysore -570 008,

Karnataka.

# Journal of Entomology and Zoology Studies

Available online at www.entomoljournal.com



### Analysis of phenotypic stability for yield and yield components in bivoltine silkworm hybrids

### K Mandal, SM Moorthy

### Abstract

Stability analysis was carried out to study stability in performance and genotype X environment interactions for 42 bivoltine silkworm hybrids reared in three seasons for three years. Stability statistics based on Eberhart and Russell approach were estimated for all the hybrids and traits. The G X E (linear) interaction was highly significant for all characters except shell%, when tested against pooled deviation, which revealed that there are wide genetic differences among hybrids for their regression on the environmental index. Considering high mean value and regression coefficient for most of the yield and yield components SK3 x BHR2 and O3 x D6 (P) found to be stable hybrids. Remaining hybrids seemed to be considerably influenced by Genotype X environment interactions and may be recommended for particular seasons.

Keywords: Bivoltine silkworm, Stability analysis, Seasons.

### 1. Introduction

The aim of any breeding programme is to improve crop production either within a given macro-environment or in a wide range of growing conditions <sup>[1, 2]</sup>. A successful cultivar needs to possess high and stable yield potential over a wide range of environmental conditions <sup>[3]</sup>. G x E interaction occurs widely in any breeding programme. It causes cultivars to perform different ranks in different environments and may cause selections from one environment to perform poorly in another. It is often used to refer to fluctuations of yield across the environments and force the breeders to check genotypic adaptation [4]. Knowledge of G x E interaction can help to reduce the cost of extensive genotype evaluation by eliminating unnecessary testing trials and by fine-tuning breeding programme <sup>[5]</sup>. G x E interaction is considered quantitative if the ranking of genotypes do not change in different environments <sup>[6]</sup>. A number of statistical methods are used for estimation of phenotypic stability. The classical parametric stability statistics are ecovalence, environment variance, regression coefficient, and sum of squared deviations from regression [7]. The silkworm Bombyx mori L. is an economically important and development of bivoltine silkworm hybrids, which can adapt wide range of diversified environments, is ultimate goal of any silkworm breeders involved in breeding programme. Some genotypes / hybrids may fair well in some environments but no so well in others. Therefore, an ideal approach is evaluation of hybrids for stability of performance under varying environmental conditions for yield and other traits. Therefore, the present investigation was carried out to identify stable hybrid by evaluating under diverse environments

## Materials and Methods Hybrid preparation and rearing

Six selected oval silkworm breeds *viz.*, MC3, O2, O3, O4, SK3, KPG-A and seven dumbbell silkworm breeds viz., SK4, SK6, BHR2, D4, D7, MJ1, D6(P) were crossed in lines x testers mating design and prepared 42 hybrids. These F1 hybrids were reared following completely randomized design (CRD) with three replications each and 300 larvae in each replication in three commercial crop seasons (autumn, spring and summer) for three years. The economically important parameters like fecundity, cocoon yield/ 10,000 larvae by number and weight, single cocoon weight (SCW), single shell weight (SSW), cocoon shell %, filament length (FL), denier, reelability%, raw silk% and neatness were collected.

~ 378 ~

### 2.2. Stability analysis

The stability analysis was done following Eberhart and Russel (1966) <sup>[5]</sup> model which interprets the variance of regression deviations as a measure of cultivar stability and the liner regression coefficient ( $\beta$ ) as a measure of environmental index. In this model, mean ( $\mu$ ) and environmental index (Ij) are used as dependent and independent variables respectively to compute the regression coefficient. According to this model, an ideal genotype should have high mean ( $\mu > X$ ), a unit regression coefficient ( $\beta$ i=1) and no deviation from linearity (S2 di = 0).

The basic model for the Eberhart and Russel (1966) <sup>[5]</sup> model is:

$$Yij = \mu i + i Ij + \delta ij,$$

Where,

Yij= genotypic mean of ith genotype at jth environment.

 $\mu$ i= mean of ith genotype over all environments

 $\beta i$ = regression coefficient which measures the response of ith genotype to environments

Ij= environmental index as mean of all genotypes at jth environment minus the overall mean, and

 $\delta ij$ = deviation from regression coefficient of ith genotype at jth environment

### 3. Results and Discussion

Pooled analysis of variance showed highly significant differences among the hybrids for all the traits studied (Table 1). The genotype x environment (G X E) interaction was further partitioned into linear and non-linear (pooled deviation) components. The G X E (linear) interaction was highly significant for six characters except shell%, when tested against pooled deviation, which revealed that there are wide genetic differences among hybrids for their regression on the environmental index. Estimates of environmental index (Table 2) for all the traits showed that spring was most favourable season for realizing yield potential of hybrids while summer was poor yielding environment. This shows that performance of the hybrids varied from season to season.

The stability parameters along with mean are presented in Table 3, 3a, 3b, 3c and 3d. Out of 42 hybrids, 20 hybrids manifested high mean performance for fecundity compared to grand mean but only three hybrids showed regression coefficient around unity (bi=1). Hybrids like SK3 x BHR2, SK3 x D6(P) and O4 x D7 with higher mean than grand mean, regression co-efficient approaching 1 and non-significant S<sup>2</sup>di confirmed their wide adaptation across the environments. In case of larval weight, hybrids viz., O2 x BHR2,O3 x BHR2, O4 x SK4, O4 x D6(P) and O4 x D7 possessed higher mean, bi<1 and lesser deviation of regression which indicated their stability in across the environments (Table 3).

In case of cocoon yield (number), SK3 x BHR2, O3 x D6(P), O4 x D4, MC3 x D6(P)and O4 x MJ1 showed higher mean with regression co-efficient approaching 1 and lesser deviation suggesting their adaptability over environments. However, SK3 x SK4, SK3 x SK6, O3 x BHR2 and O3 x D4 are with high mean but bi value lower than 1 indicating their suitability in favourable environments. O2 x D7 and MC3 x D6 (P) even though showed higher mean value but with higher bi value indicating their suitability in unfavourable environments. For cocoon yield/10000 larvae (wt), out of 42 hybrids, 25 hybrids showed higher cocoon yield. Of which only five hybrids (SK3 x BHR2, O2 x BHR2, O3 x D4, O4 x MJ1 and MC3 x D7) showed higher yield with regression co-efficient value around unity and low deviation of regression indicating relatively stable performance over environments(Table 3a). Hybrids like SK3 x D6(P), O2 x SK4, O2 x SK6, and O3 x D7 showed high mean value with bi value lesser than 1 indicating better performance in poor environment. Hybrids namely SK3 x SK4, SK3 x SK6, SK3 x D7, O3 x BHR2 and O4 x SK4 had high mean yield than grand mean with bi value more than 1 and low deviation of regression demonstrating its adaptability to favourable environment.

Only O4 x D4 showed stable performance for single cocoon weight with high mean and bi value nearing 1 and low deviation of regression. However, eleven hybrids showed higher mean with bi value more than 1 and lower deviation of regression predicting their better performance in favourable environment. Two hybrids [SK3 x D4 & O4 x MJ1] showed stable performance for shell weight with higher mean performance, bi value near to 1 and relatively low deviation of regression (Table 3b). In case of shell%, only one [O4 x D6 (P)] hybrid showed stable performance having high mean and bi value near 1 and relatively low deviation of regression. However, around nine hybrids showed higher mean compared to grand mean but with bi value more than 1 and low deviation suggesting their adaptability in favourable environment. Similarly three hybrids showed high mean but their bi value was lower than 1 which predicted their better potential in unfavourable environment (Table 3c).

As far as the filament length is concerned, though 20 hybrids have showed higher mean but not a single one showed by value around unity. But hybrids like SK3 x BHR2, SK3 x D7, O3 x BHR2 and O3 x D6(P) showed higher mean than grand mean with higher bi value indicating their suitability in favourable environments (Table 3c). In case of rawsilk, higher mean with bi value around 1 and lesser deviation was observed only in SK3 x D6 (P) suggesting the hybrid is stable over environment. However SK3 x SK4, O2 x SK4, O2 x SK6 and O3 x D6(P) found suitable for favourable environment due to their higher mean with bi value more than 1 and lesser deviation (Table 3d).

|                  |     | SS      | MSS   | SS    | MSS      | SS               | MSS      | SS              | MSS              | SS   | MSS   | SS    | MSS     | SS   | MSS   | SS     | MSS   | SS  | MSS           |
|------------------|-----|---------|-------|-------|----------|------------------|----------|-----------------|------------------|------|-------|-------|---------|------|-------|--------|-------|-----|---------------|
| Source           | Df  | Fecur   | dity  | Larva | l weight | Yield/<br>Larvae |          | Yield/<br>Larva | 10000<br>e (Wt.) | S    | CW    | S     | SW      | Sh   | ell%  | F      | Ĺ     |     | w Silk<br>(%) |
| Hybrids (H)      | 41  | 234120  | 5710  | 695.9 | 16.97    | 12553637         | 306186   | 294.7           | 7.18             | 1.98 | 0.048 | 0.08  | 0.002   | 35.7 | 0.87  | 160547 | 3915  | 80  | 1.970         |
| Environment (E)  | 2   | 27484.9 | 13742 | 375.8 | 187.93   | 2825 312         | 1412765  | 383.6           | 191.8            | 0.76 | 0.381 | 0.07  | 0.037   | 26.7 | 13.37 | 23012  | 11506 | 251 | 125.57        |
| H x E            | 82  | 194843  | 2376  | 316.4 | 3.859    | 5867 8817        | 715595   | 382.2           | 4.66             | 1.53 | 0.019 | 0.05  | 0.001   | 41.8 | 0.51  | 202407 | 2468  | 273 | 3.338         |
| E (H x E)        | 84  | 74109   | -     | 230.7 | -        | 2897 8043        | -        | 255.2           | -                | 0.76 | -     | 0.04  | -       | 22.8 | -     | 75139  | -     | 174 |               |
| E (Linear)       | 1   | 9161    | -     | 125.2 | -        | 9418 437         | -        | 127.8           | -                | 0.25 | -     | 0.02  | -       | 8.91 | -     | 7670   | -     | 83  |               |
| H x E (Linear)   | 41  | 25425   | 620.1 | 82.36 | 2.009    | 12884769         | 314262   | 40.5            | 0.98             | 0.19 | 0.005 | 0.009 | 0.00024 | 6.66 | 0.16  | 39833  | 971   | 87  | 2.133         |
| Pooled deviation | 42  | 39521   | 940.9 | 23.12 | 0.551    | 6674837          | 158924.7 | 86.8            | 2.06             | 0.31 | 0.008 | 0.009 | 0.00022 | 7.30 | 0.17  | 27636  | 658   | 3   | 0.090         |
| Pooled error     | 252 | 6890.9  | 27.3  | 31.80 | 0.126    | 565910           | 2245.7   | 11.0            | 0.04             | 0.10 | 0.000 | 0.007 | 0.00003 | 2.35 | 0.009 | 5015   | 19    | 1   | 0.005         |

Table 1: Joint regression analysis of variance (SS: Sum of square; MSS: Mean sum of square) for different traits over environments in hybrids of bivoltine silkworm

**Table 2:** Estimates of environmental Index

| Season | Fecundity | Larval weight | Yield/ 10000 Larvae (no.) | Yield/ 10000 Larvae (Wt.) | SCW    | SSW    | Shell % | FL     | Raw Silk (%) |
|--------|-----------|---------------|---------------------------|---------------------------|--------|--------|---------|--------|--------------|
| Autumn | -9.62     | -0.76         | 26.69                     | -0.40                     | -0.043 | -0.014 | -0.272  | -10.97 | 0.53         |
| Spring | 11.11     | 1.41          | 320.71                    | 1.38                      | 0.062  | 0.019  | 0.361   | 4.43   | 0.62         |
| Summer | -1.49     | -0.65         | -347.40                   | -0.99                     | -0.019 | -0.005 | -0.089  | 6.54   | -1.15        |

| Table 3. Estimates | of stability analysis | s for fecundity and larv  | al weight in hivolti | he silkworm hybrids |
|--------------------|-----------------------|---------------------------|----------------------|---------------------|
| Table 5. Estimates | of stability analysis | s for recullency and farv | ar weight in broth   | ic slikwonn nyonus  |

| II-bJ        |      | Fecundity |                   | Larval weight |        |                   |  |
|--------------|------|-----------|-------------------|---------------|--------|-------------------|--|
| Hybrids      | Mean | bi        | S <sup>2</sup> di | Mean          | bi     | S <sup>2</sup> di |  |
| SK3 x SK4    | 609  | 3.619     | -925              | 41.48         | 2.082  | -4.288            |  |
| SK3 x SK6    | 601  | -0.215    | -208              | 43.29         | 2.751  | -3.569            |  |
| SK3 x BHR2   | 591  | 1.089     | 4050              | 42.80         | 0.301  | -4.365            |  |
| SK3 x D4     | 585  | -2.117    | -925              | 42.95         | 3.059  | -4.03             |  |
| SK3 x D6(P)  | 551  | 1.079     | -778              | 46.48         | 0.021  | -4.086            |  |
| SK3 x D7     | 574  | 4.439     | 2220              | 43.88         | 1.689  | -1.866            |  |
| SK3 x MJ1    | 552  | 1.403     | -868              | 44.60         | 0.072  | -4.303            |  |
| O2 x SK4     | 545  | 0.298     | -646              | 47.09         | 0.327  | -4.443            |  |
| O2 x SK6     | 527  | 0.298     | -646              | 47.76         | 0.304  | -4.569            |  |
| O2 x BHR2    | 595  | 1.753     | 164               | 44.75         | 1.067  | -3.885            |  |
| O2 x D4      | 559  | 0.783     | -434              | 47.00         | 0.312  | -3.408            |  |
| O2 x D6(P)   | 618  | -0.582    | 152               | 44.31         | -0.509 | -4.457            |  |
| O2 x D7      | 624  | -0.980    | 427               | 44.42         | 2.47   | -4.164            |  |
| O2 x MJ1     | 583  | 1.753     | 164               | 43.01         | 2.139  | -3.730            |  |
| O3 x SK4     | 547  | 3.113     | 2634              | 39.39         | 1.051  | -3.226            |  |
| O3 x SK6     | 509  | 1.642     | 313               | 47.33         | 1.418  | -3.928            |  |
| O3 x BHR2    | 576  | 3.712     | 2612              | 44.52         | 1.136  | -4.526            |  |
| O3 x D4      | 544  | 1.642     | 313               | 43.76         | 0.584  | -4.301            |  |
| O3 x D6(P)   | 657  | 2.414     | -828              | 47.79         | 0.340  | -4.522            |  |
| O3 x D7      | 526  | 1.642     | 313               | 42.26         | 0.584  | -4.301            |  |
| O3 x MJ1     | 521  | 1.642     | 313               | 44.83         | 1.418  | -3.928            |  |
| O4 x SK4     | 652  | -1.914    | -537              | 44.46         | 1.066  | -4.273            |  |
| O4 x SK6     | 573  | 1.017     | -808              | 47.58         | 1.061  | -4.219            |  |
| O4 x BHR2    | 575  | 0.812     | -853              | 42.40         | 1.636  | -4.087            |  |
| O4 x D4      | 587  | 0.812     | -853              | 44.70         | 1.636  | -4.087            |  |
| O4 x D6(P)   | 567  | 0.062     | -928              | 48.43         | 1.061  | -4.219            |  |
| O4 x D7      | 561  | 1.017     | -808              | 45.73         | 1.061  | -4.219            |  |
| O4 x MJ1     | 638  | 3.104     | 2209              | 45.92         | 1.842  | -4.370            |  |
| MC3 x SK4    | 489  | 1.696     | -414              | 45.40         | 0.554  | -4.396            |  |
| MC3 x SK6    | 548  | 4.136     | 3414              | 39.75         | 1.548  | -4.598            |  |
| MC3 x BHR2   | 569  | 2.894     | -590              | 42.28         | 1.614  | -3.284            |  |
| MC3 x D4     | 497  | 1.696     | -414              | 43.90         | 0.554  | -4.396            |  |
| MC3 x D6(P)  | 493  | 2.315     | -245              | 42.95         | 0.554  | -4.396            |  |
| MC3 x D7     | 510  | -0.706    | -929              | 42.97         | 1.343  | -2.184            |  |
| MC3 x MJ1    | 518  | 2.129     | 903               | 39.46         | 1.960  | -4.203            |  |
| KPGA x SK4   | 506  | -0.303    | -920              | 48.99         | 0.485  | -3.367            |  |
| KPGA x SK6   | 523  | -0.303    | -920              | 46.27         | 0.323  | -4.582            |  |
| KPGA x BHR2  | 536  | -0.635    | -920              | 44.80         | 2.373  | -4.526            |  |
| KPGA x D4    | 527  | -0.303    | -920              | 47.79         | 0.485  | -3.367            |  |
| KPGA x D6(P) | 609  | -3.017    | -533              | 41.62         | 0.394  | -4.590            |  |
| KPGA x D7    | 515  | -0.635    | -920              | 45.52         | 0.323  | -4.582            |  |
| KPGA x MJ1   | 515  | -0.303    | -920              | 44.64         | 0.536  | -4.256            |  |
| Grand mean   | 560  | 1         |                   | 44.51         |        |                   |  |

Table 3a: Estimates of stability analysis for yield / 10000 larvae (number) and yield / 10000 larvae (Wt.) in bivoltine silkworm hybrids

| Hybrids     | Yie  | eld / 10000 Larv | ae (number.)      | Yield | Yield / 10000 Larvae (Wt.) |                   |  |  |
|-------------|------|------------------|-------------------|-------|----------------------------|-------------------|--|--|
| nybrius     | Mean | bi               | S <sup>2</sup> di | Mean  | bi                         | S <sup>2</sup> di |  |  |
| SK3 x SK4   | 9269 | 0.224            | 116853.940        | 16.34 | 1.293                      | 0.515             |  |  |
| SK3 x SK6   | 9062 | 0.240            | 742.371           | 17.03 | 1.620                      | -0.062            |  |  |
| SK3 x BHR2  | 9257 | 0.825            | -21945.793        | 17.74 | 1.173                      | 1.244             |  |  |
| SK3 x D4    | 9581 | -0.076           | -91813.1          | 17.51 | 1.351                      | -0.157            |  |  |
| SK3 x D6(P) | 9127 | 0.150            | -87531.7          | 16.46 | 0.417                      | -0.400            |  |  |
| SK3 x D7    | 9227 | 0.646            | -3488.603         | 17.61 | 1.495                      | -0.765            |  |  |
| SK3 x MJ1   | 9159 | 0.012            | -91854.4          | 15.88 | 0.277                      | -0.683            |  |  |
| O2 x SK4    | 9240 | 0.605            | -858.281          | 16.68 | 0.493                      | -0.774            |  |  |
| O2 x SK6    | 8717 | 0.410            | -79741.047        | 16.38 | 0.259                      | -0.694            |  |  |
| O2 x BHR2   | 9330 | 0.473            | -11126.576        | 18.52 | 0.967                      | 2.350             |  |  |
| O2 x D4     | 9282 | 0.473            | -11126.576        | 17.55 | 0.440                      | -0.758            |  |  |
| O2 x D6(P)  | 8974 | -0.273           | 1585320.31        | 17.88 | 1.276                      | 17.977            |  |  |
| O2 x D7     | 9019 | 1.356            | -91656.5          | 18.35 | 1.392                      | 0.348             |  |  |

| O2 x MJ1     | 9405 | 0.473  | -11126.576 | 17.73 | 0.746 | 0.068  |
|--------------|------|--------|------------|-------|-------|--------|
| O3 x SK4     | 8767 | 1.394  | -71384.236 | 14.51 | 1.206 | -0.751 |
| O3 x SK6     | 8686 | 0.724  | -74498.559 | 15.99 | 0.357 | -0.633 |
| O3 x BHR2    | 9002 | 0.378  | 4666.773   | 18.17 | 1.772 | 0.129  |
| O3 x D4      | 9008 | 0.493  | 49061.592  | 17.83 | 1.062 | 2.605  |
| O3 x D6(P)   | 9146 | 0.956  | -12750.921 | 19.30 | 1.598 | 1.476  |
| O3 x D7      | 8961 | 0.485  | 96155.68   | 16.06 | 0.238 | 0.572  |
| O3 x MJ1     | 8698 | 0.724  | -74498.55  | 15.07 | 0.539 | -0.844 |
| O4 x SK4     | 8605 | 1.767  | -42868.023 | 16.90 | 1.834 | -0.164 |
| O4 x SK6     | 8567 | 0.105  | -94307.1   | 14.73 | 0.448 | -0.030 |
| O4 x BHR2    | 8573 | 0.105  | -94307.1   | 14.36 | 0.507 | -0.076 |
| O4 x D4      | 8991 | 1.075  | -58997.387 | 17.46 | 1.333 | -0.398 |
| O4 x D6(P)   | 8379 | -0.009 | -94134.2   | 14.84 | 0.236 | -0.427 |
| O4 x D7      | 8599 | 0.105  | -94307.1   | 14.40 | 0.448 | -0.024 |
| O4 x MJ1     | 9174 | 0.996  | 31574.097  | 18.18 | 1.176 | 0.462  |
| MC3 x SK4    | 8746 | 1.254  | 300306.431 | 13.64 | 0.111 | 0.424  |
| MC3 x SK6    | 9383 | 0.450  | -79720.375 | 16.49 | 0.884 | -0.717 |
| MC3 x BHR2   | 9119 | 0.379  | 145588.477 | 16.24 | 0.820 | -0.767 |
| MC3 x D4     | 8802 | 1.254  | 300306.431 | 13.07 | 0.095 | 0.293  |
| MC3 x D6(P)  | 9058 | 1.248  | 298556.486 | 14.60 | 0.457 | 2.909  |
| MC3 x D7     | 8999 | -0.83  | -6376.369  | 15.81 | 0.969 | 1.412  |
| MC3 x MJ1    | 9401 | -0.025 | -64009.450 | 16.08 | 0.764 | -0.359 |
| KPGA x SK4   | 8547 | 3.18   | 119097.517 | 14.13 | 1.525 | 3.147  |
| KPGA x SK6   | 8530 | 3.19   | 119097.517 | 14.91 | 1.615 | 3.678  |
| KPGA x BHR2  | 8576 | 3.19   | 119097.517 | 14.72 | 1.902 | 2.782  |
| KPGA x D4    | 8509 | 3.19   | 119097.517 | 14.64 | 1.585 | 3.495  |
| KPGA x D6(P) | 8459 | 4.30   | 425665.953 | 14.80 | 1.865 | 8.426  |
| KPGA x D7    | 8558 | 3.18   | 119097.517 | 14.75 | 1.907 | 2.809  |
| KPGA x MJ1   | 8565 | 3.18   | 119097.517 | 14.35 | 1.549 | 3.286  |
| Grand mean   | 8957 |        |            | 15.74 |       |        |

Table 3b: Estimates of stability analysis for single cocoon weight and single shell weight in bivoltine silkworm hybrids

| TT-1-1-1    | S     | ingle Cocoon W | eight             | Single Shell Weight |       |                   |  |  |
|-------------|-------|----------------|-------------------|---------------------|-------|-------------------|--|--|
| Hybrids     | Mean  | bi             | S <sup>2</sup> di | Mean                | bi    | S <sup>2</sup> di |  |  |
| SK3 x SK4   | 1.801 | 1.7612         | -0.002            | 0.361               | 1.692 | -0.00032          |  |  |
| SK3 x SK6   | 1.837 | 1.8614         | 0.001             | 0.371               | 1.661 | -0.0001           |  |  |
| SK3 x BHR2  | 1.907 | 1.9142         | 0.008             | 0.356               | 1.815 | -0.00038          |  |  |
| SK3 x D4    | 1.789 | 1.8352         | -0.0060           | 0.354               | 1.152 | -0.00036          |  |  |
| SK3 x D6(P) | 1.813 | 0.4385         | -0.002            | 0.362               | 0.310 | -0.0001           |  |  |
| SK3 x D7    | 1.928 | 2.8346         | -0.0048           | 0.378               | 2.985 | -0.00038          |  |  |
| SK3 x MJ1   | 1.733 | 0.4354         | -0.002            | 0.345               | 0.838 | -0.0002           |  |  |
| O2 x SK4    | 1.805 | 0.1803         | -0.0060           | 0.349               | 0.734 | -0.00034          |  |  |
| O2 x SK6    | 1.880 | 0.1803         | -0.0060           | 0.365               | 0.528 | -0.00041          |  |  |
| O2 x BHR2   | 1.983 | 2.1836         | 0.0009            | 0.373               | 1.449 | -0.0001           |  |  |
| O2 x D4     | 1.890 | 0.1803         | -0.0060           | 0.374               | 0.734 | -0.00034          |  |  |
| O2 x D6(P)  | 1.942 | 2.1458         | 0.006             | 0.385               | 1.712 | -0.00033          |  |  |
| O2 x D7     | 1.996 | 1.3194         | 0.010             | 0.393               | 1.533 | 0.0005            |  |  |
| O2 x MJ1    | 1.903 | 2.1836         | 0.0009            | 0.359               | 1.640 | -0.0002           |  |  |
| O3 x SK4    | 1.641 | 0.5399         | 0.005             | 0.311               | 0.434 | 0.0002            |  |  |
| O3 x SK6    | 1.840 | 0.1962         | -0.004            | 0.366               | 1.432 | -0.00038          |  |  |
| O3 x BHR2   | 1.933 | 3.325          | -0.001            | 0.366               | 2.086 | -0.00038          |  |  |
| O3 x D4     | 1.925 | 1.5964         | -0.0047           | 0.366               | 1.432 | -0.00038          |  |  |
| O3 x D6(P)  | 2.035 | 2.4358         | 0.012             | 0.405               | 2.098 | 0.0003            |  |  |
| O3 x D7     | 1.790 | 0.1237         | -0.001            | 0.359               | 1.432 | -0.00038          |  |  |
| O3 x MJ1    | 1.732 | 0.4168         | -0.0061           | 0.332               | 0.880 | -0.00039          |  |  |
| O4 x SK4    | 2.000 | 1.4309         | 0.021             | 0.385               | 1.426 | 0.0004            |  |  |
| O4 x SK6    | 1.721 | 0.3586         | 0.010             | 0.329               | 0.442 | -0.0001           |  |  |
| O4 x BHR2   | 1.676 | 0.5127         | 0.011             | 0.315               | 0.442 | -0.0001           |  |  |
| O4 x D4     | 1.875 | 1.1305         | -0.0053           | 0.345               | 0.878 | -0.00041          |  |  |
| O4 x D6(P)  | 1.773 | 0.2017         | 0.001             | 0.367               | 0.425 | -0.0001           |  |  |
| O4 x D7     | 1.676 | 0.3586         | 0.010             | 0.323               | 0.442 | -0.0001           |  |  |
| O4 x MJ1    | 1.964 | 1.3624         | -0.0053           | 0.380               | 0.838 | -0.00038          |  |  |
| MC3 x SK4   | 1.559 | 0.3603         | -0.0054           | 0.295               | 0.107 | -0.00039          |  |  |

| MC3 x SK6    | 1.766 | 0.9762 | -0.001  | 0.328 | 0.761  | -0.0001  |
|--------------|-------|--------|---------|-------|--------|----------|
| MC3 x BHR2   | 1.780 | 0.7476 | -0.0058 | 0.340 | 0.560  | -0.00037 |
| MC3 x D4     | 1.485 | 0.3603 | -0.0054 | 0.293 | 0.291  | -0.00038 |
| MC3 x D6(P)  | 1.608 | 0.0900 | 0.0004  | 0.299 | -0.122 | -0.0002  |
| MC3 x D7     | 1.782 | 1.0720 | 0.005   | 0.332 | 0.542  | -0.0002  |
| MC3 x MJ1    | 1.728 | 1.4411 | -0.0062 | 0.337 | 1.505  | -0.00041 |
| KPGA x SK4   | 1.639 | 0.5649 | 0.005   | 0.313 | 0.447  | -0.0002  |
| KPGA x SK6   | 1.736 | 0.5649 | 0.005   | 0.343 | 0.709  | 0.0001   |
| KPGA x BHR2  | 1.701 | 1.4014 | 0.008   | 0.338 | 1.079  | 0.00003  |
| KPGA x D4    | 1.707 | 0.5649 | 0.005   | 0.319 | 0.447  | -0.0002  |
| KPGA x D6(P) | 1.743 | 0.0681 | 0.003   | 0.350 | 0.764  | -0.00032 |
| KPGA x D7    | 1.708 | 1.4014 | 0.008   | 0.335 | 0.734  | 0.0003   |
| KPGA x MJ1   | 1.662 | 0.5649 | 0.005   | 0.336 | 0.709  | 0.0001   |
| Grand mean   | 1.795 |        |         | 0.348 |        |          |

Table 3c: Estimates of stability analysis for shell% and filament length in bivoltine silkworm hybrids

|              |       | Shell% |                   | Filament Length |        |                                         |  |  |
|--------------|-------|--------|-------------------|-----------------|--------|-----------------------------------------|--|--|
| Hybrids      | Mean  | bi     | S <sup>2</sup> di | Mean            | bi     | S <sup>2</sup> di                       |  |  |
| SK3 x SK4    | 20.03 | 1.567  | -0.238            | 905             | 1.938  | -1151.83                                |  |  |
| SK3 x SK6    | 20.14 | 1.255  | -0.246            | 896             | 5.246  | -196.918                                |  |  |
| SK3 x BHR2   | 18.62 | 1.545  | 0.425             | 922             | 4.499  | -1031.818                               |  |  |
| SK3 x D4     | 19.84 | -0.187 | 0.097             | 902             | 7.536  | -1095.10                                |  |  |
| SK3 x D6(P)  | 19.98 | 0.202  | -0.191            | 977             | -0.196 | -625.495                                |  |  |
| SK3 x D7     | 19.38 | 3.272  | 0.398             | 956             | 4.367  | -625.821                                |  |  |
| SK3 x MJ1    | 19.89 | 1.770  | -0.247            | 932             | 0.317  | -969.207                                |  |  |
| O2 x SK4     | 19.32 | 1.944  | 0.103             | 949             | -0.618 | -1062.406                               |  |  |
| O2 x SK6     | 19.41 | 1.257  | -0.208            | 968             | -0.585 | -1080.30                                |  |  |
| O2 x BHR2    | 18.82 | 0.229  | -0.208            | 945             | -1.540 | -445.077                                |  |  |
| O2 x D4      | 19.77 | 1.845  | 0.077             | 966             | -0.316 | -1152.02                                |  |  |
| O2 x D6(P)   | 19.76 | 0.719  | 0.176             | 941             | -2.202 | 772.507                                 |  |  |
| O2 x D7      | 19.58 | 1.939  | -0.049            | 906             | 5.888  | 827.674                                 |  |  |
| O2 x MJ1     | 18.80 | 0.767  | -0.222            | 954             | 1.412  | -258.566                                |  |  |
| O3 x SK4     | 18.92 | 0.166  | -0.097            | 881             | 2.082  | -367.345                                |  |  |
| O3 x SK6     | 19.91 | 3.805  | -0.197            | 919             | -0.532 | -889.089                                |  |  |
| O3 x BHR2    | 18.90 | 0.082  | -0.102            | 919             | 2.400  | -1017.519                               |  |  |
| O3 x D4      | 19.28 | 0.993  | 0.025             | 931             | -0.413 | -994.312                                |  |  |
| O3 x D6(P)   | 19.86 | 1.320  | -0.239            | 964             | 2.261  | -268.858                                |  |  |
| O3 x D7      | 19.45 | 0.344  | -0.191            | 907             | -0.532 | -889.089                                |  |  |
| O3 x MJ1     | 19.19 | 1.977  | -0.158            | 902             | -0.532 | -889.089                                |  |  |
| O4 x SK4     | 19.20 | 1.300  | -0.236            | 912             | -0.110 | 3954.138                                |  |  |
| O4 x SK6     | 19.12 | 0.871  | 0.008             | 902             | 2.380  | -1140.84                                |  |  |
| O4 x BHR2    | 18.80 | 0.650  | 0.034             | 836             | 0.448  | 567.453                                 |  |  |
| O4 x D4      | 18.41 | 0.527  | -0.195            | 883             | 1.503  | 701.614                                 |  |  |
| O4 x D6(P)   | 20.69 | 1.033  | -0.231            | 909             | 1.225  | -1148.25                                |  |  |
| O4 x D7      | 19.30 | 0.890  | 0.037             | 881             | 2.705  | -1152.05                                |  |  |
| O4 x MJ1     | 19.32 | 0.007  | -0.248            | 873             | -2.489 | 804.916                                 |  |  |
| MC3 x SK4    | 18.92 | 1.031  | 0.181             | 899             | 0.209  | -761.539                                |  |  |
| MC3 x SK6    | 18.54 | 0.629  | -0.221            | 865             | 0.484  | 973.739                                 |  |  |
| MC3 x BHR2   | 19.05 | 0.340  | 0.054             | 869             | 0.402  | -981.181                                |  |  |
| MC3 x D4     | 19.78 | 1.744  | 0.398             | 879             | 0.209  | -761.539                                |  |  |
| MC3 x D6(P)  | 18.60 | -0.116 | -0.242            | 867             | 0.209  | -761.539                                |  |  |
| MC3 x D7     | 18.64 | -0.454 | 0.021             | 858             | 5.287  | -170.575                                |  |  |
| MC3 x MJ1    | 19.41 | 1.796  | -0.248            | 836             | 3.338  | -1096.32                                |  |  |
| KPGA x SK4   | 19.12 | 0.483  | 0.075             | 895             | -2.058 | -1122.46                                |  |  |
| KPGA x SK6   | 19.76 | 1.201  | -0.213            | 940             | -0.112 | -770.332                                |  |  |
| KPGA x BHR2  | 19.85 | 0.721  | -0.178            | 953             | -0.112 | -770.332                                |  |  |
| KPGA x D4    | 18.69 | 0.484  | 0.020             | 913             | -2.058 | -1122.46                                |  |  |
| KPGA x D6(P) | 18.72 | 1.014  | -0.185            | 948             | 0.498  | -903.288                                |  |  |
| KPGA x D7    | 19.63 | -0.198 | -0.233            | 953             | -0.112 | -770.332                                |  |  |
| KPGA x MJ1   | 20.20 | 1.233  | -0.220            | 910             | -0.327 | -908.930                                |  |  |
| Grand mean   | 19.35 |        | 0.220             | 902             | 0.027  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |  |

| Table 3d: Estimates of stability analysis for raw silk% in bivoltine |
|----------------------------------------------------------------------|
| silkworm hybrids                                                     |

|              |       | •         |                   |
|--------------|-------|-----------|-------------------|
| Hybrids      | Mean  | Raw silk% | S <sup>2</sup> di |
| SK3 x SK4    | 13.23 | 1.480     | -0.701            |
| SK3 x SK6    | 12.97 | 1.678     | -0.528            |
| SK3 x BHR2   | 12.17 | 1.885     | -0.705            |
| SK3 x D4     | 12.95 | 2.245     | -0.480            |
| SK3 x D6(P)  | 14.47 | 0.906     | -0.688            |
| SK3 x D7     | 12.98 | 1.806     | -0.702            |
| SK3 x MJ1    | 13.36 | 0.942     | -0.689            |
| O2 x SK4     | 13.06 | 1.707     | -0.533            |
| O2 x SK6     | 13.81 | 1.708     | -0.533            |
| O2 x BHR2    | 12.89 | 1.707     | -0.533            |
| O2 x D4      | 12.98 | 1.707     | -0.533            |
| O2 x D6(P)   | 12.57 | 1.459     | -0.636            |
| O2 x D7      | 12.35 | 1.785     | -0.645            |
| O2 x MJ1     | 11.97 | 1.7075    | -0.533            |
| O3 x SK4     | 12.97 | 1.388     | -0.1189           |
| O3 x SK6     | 13.40 | 0.828     | -0.690            |
| O3 x BHR2    | 12.22 | 0.533     | -0.643            |
| O3 x D4      | 12.96 | 1.706     | -0.697            |
| O3 x D6(P)   | 13.71 | 1.483     | -0.695            |
| O3 x D7      | 12.89 | 1.700     | -0.697            |
| O3 x MJ1     | 12.55 | 0.828     | -0.690            |
| O4 x SK4     | 12.42 | 2.086     | -0.707            |
| O4 x SK6     | 13.89 | 0.169     | -0.575            |
| O4 x BHR2    | 11.72 | 0.392     | -0.463            |
| O4 x D4      | 12.36 | 0.937     | -0.428            |
| O4 x D6(P)   | 14.33 | 0.134     | -0.706            |
| O4 x D7      | 13.14 | 0.169     | -0.575            |
| O4 x MJ1     | 12.26 | 1.700     | -0.637            |
| MC3 x SK4    | 12.18 | 0.746     | -0.612            |
| MC3 x SK6    | 12.04 | 1.827     | -0.704            |
| MC3 x BHR2   | 11.91 | 1.826     | -0.707            |
| MC3 x D4     | 12.13 | 0.746     | -0.612            |
| MC3 x D6(P)  | 11.88 | 0.746     | -0.612            |
| MC3 x D7     | 12.45 | 1.902     | -0.678            |
| MC3 x MJ1    | 14.75 | -3.898    | -0.700            |
| KPGA x SK4   | 14.16 | 0.071     | -0.703            |
| KPGA x SK6   | 13.94 | 0.246     | -0.604            |
| KPGA x BHR2  | 13.84 | 0.246     | -0.604            |
| KPGA x D4    | 14.25 | 0.071     | -0.703            |
| KPGA x D6(P) | 13.75 | 0.188     | -0.682            |
| KPGA x D7    | 13.84 | 0.246     | -0.604            |
| KPGA x MJ1   | 13.86 | 0.246     | -0.604            |
| Grand mean   | 13.04 |           |                   |

The stability proposed by Eberthart and Russel (1966) <sup>[5]</sup> has been widely used in crop plants [8-11] and in silkworm, Bombyx mori<sup>[12-14]</sup>. The goal of a breeder is to select one or more good varieties. Before a decision can be made a careful analysis of phenotypic, genotypic and environmental variations & genotype x environmental interaction is necessary. The objective of this study is to predict the selection of a hybrid based on the observations existing in the populations. On the other hand it will help us to understand how an organism's phenotype is influenced by its genotype and the environment in which it was developed and exists. The ideal genotype as proposed by Eberthart and Russel (1966)<sup>[5]</sup> could have a high mean over range of environments, a regression coefficient of one and deviation mean square from regression of zero. Genotypes with regression coefficient is greater than one could be approved for more favourable environment, while those with coefficient less than one would be relatively better adapted to less favourable condition. The pooled analysis of variance for stability revealed significant genetic variability for the traits studied, as well as the environment indicating

differential effect of each environment. Further, partitioning of G x E interaction into G x E (linear) and pooled deviations (non-linear) revealed significance of both indicating that both components accounted for G x E interaction. The highly significant differences (P<0.01) in the environment and hybrids indicate the fluctuation of genotypes in their responses to the different environments. The deviation from regression for majority of the hybrids was highly significant that revealed the response of these hybrids was unpredictable and that they were more suitable for sites with better environments. The regression of genotype mean yield on the environmental index resulted in regression coefficients showed larger variation. This indicates performance of hybrids varied with environments.

### 4. Conclusion

The simultaneous consideration of three parameters of stability for the individual hybrid revealed that the hybrids SK3 x BHR2 and O3 x D6(P) gave the higher mean for yield and yield contributing traits with the regression values around unity and lesser deviation from regression indicating the stability over the seasons. Hybrids viz., SK3 x SK6, SK3 x D6(P), SK3 x SK4 and O3 x D4 have showed higher mean with bi value more than 1 and high values of S<sup>2</sup>di, indicates that these hybrids are expected to give good yield under favourable environmental conditions.

### 5. Acknowledgement

The authors are wish to thank Mr. N.K. Das for statistical analysis and Smt. R. Bhutia for moral support rendered during course of the work.

### 6. References

- 1. Nssar, Huehn M. Studies on estimation of phenotypic stability: Tests significance for nonparametric measures of phenotypic stability. Biometrics 1987; 43:45-53.
- Cccarelli S. Wide adaptation: How wide? Euphytica 1989; 197-205.
- 3. Baker HC, Leon J. Stability analysis in plant breeding. Plant Breeding, 1988; 101:1-23.
- 4. Basford KE, Cooper M. Genotype x environment interactions and some considerations of their implications for wheat breeding in Australia. Australian Journal of Agricultural Research. 1998; 49:154-174.
- 5. Eberhart SA, Russell WA. Stability parameters for comparing varieties. Crop Science, 1966; 6:36-40.
- Baker RJ. Tests for cross-over genotype-environment interactions. Canadian Journal of Plant Sciences. 1988; 68:405-410.
- 7. Lin CS, Binns MR, Lefkovitch LP. Stability analysis: where do we stand? Crop Science 1986; 26:894-900.
- Dhillon SS, Singh K, Bar KS. Stability analysis of elite strain in Indian mustard. In: Rapeseed Congress, Proceedings of 10<sup>th</sup> International Symposium Canberra, Australia, 1999.
- Mekontchou T, Ngueguim M, Fobasso M. Stability analysis for yield and yield Components of selected peanut breeding lines (*Arachis hypogaea* L.) in the North Province of Cameroon. Tropicultura, 2006; 24(2):90-94.
- 10. Nassr THS, Ibrahim MM, Aboud KA. Stability parameters in yield of white mustard (*Brassica Alba* L.) in different environments. World Journal of Agricultural Sciences. 2006; 2:47-55.
- 11. Mulusew F, Tadele T, Tesfaye L. Genotype-environment interactions and stability parameters for grain yield of faba

bean (*Vicia Faba* L.) genotypes grown in south Eastern Ethiopia. International Journal of Sustainable Crop Production. 2008; 3(6):80-87.

- Thiagarajan V, Bhargava SK, Ramesh Babu M, Nagaraj B. (Difference in seasonal performance of 26 strains of silkworm *Bombyx mori* (Bombycidae). Journal of Lepidoptera Society. 1993; 47(4):321-337.
- Malik GN, Masoodi MA, Zargar GH, Kamili AS, Aijaz M. Genotype-environment interaction in some bivoltine silkworm (*Bombyx mori* L.) genotypes. Applied Bio sciences Research 1999; 1:109-111.
- Moorthy SM, Mandal K, Bhutia R, Das NK. Stability of bivoltine silkworm genotypes of *Bombyx mori* L for a few economic traits. Journal of Sericulture and Technology. 2011; 2(1):46-50.