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Abstract 
The present investigation was undertaken to follow the two insect growth regulators (IGRs), 

diflubenzuron and chromafenozide, possible effects on the histology and ultrastructure aspects of corpus 

allatum (CA) of 6th instar larvae of Spodoptera littoralis. Therefore, the LC50 (3 ppm of diflubenzuron 

and 0.1 ppm of chromafenozide) were applied to the 4th larval instar. The CA of 6th larval instar treated 

with LC50 of diflubenzuron appeared with rounded shape and decreased size (265.625 µm width & 

331.25 µm length) and the capsular fibrous sheath (3.380 µm) also reduced. Contradictory, cellular 

cortex was increased in size (71.875 µm), as well as glandular cell numbers were increased, and their 

nuclei were lost their spheroid shape. Disturbance in cytoplasmic organelles pushed glandular cell to 

switch off or to be inactive. Also, damage was pronounced in the CA of the LC50- chromafenozide treated 

larvae. The present work investigates the high potency and efficacy of the two IGRs towards S. littoralis 

corpora allata.   

 

Keywords: Spodoptera littoralis, corpus allatum, chromafenozide, diflubenzuron, histology, 
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1. Introduction 
In insect larvae, three endocrine glands are responsible for the release of neurohormones 

essential for growth, development and differentiation: the prothoracic gland, the corpus 

allatum (CA) and corpus cardiacum (CC) [1]. The cerebral neuroendocrine system of insects 

comprises the brain and retrocerebral complex [2]. The retrocerebral complex involves a pair of 

corpora cardiaca and corpora allata [3]. The corpus allatum is a glandular organ which engages 

in the release of hormonally active materials [4]. It is the major organ responsible for Juvenile 

hormone (JH) synthesis and release, which, maintains the larval characteristics at each moult 

until the adult metamorphosis takes place. JH stimulates both the synthesis of vitellogenin by 

the fat body and its uptake by the developing oocytes. In females, cyclic patterns of 

reproductive activity and vitellogenic cycles are associated with synthesis and release of JH [5-

7]. 

The CA is ectodermal in origin and is in the posterior regions of the head on both sides of the 

oesophagus. The main regulators of JH synthesis, in most insect species, are neuropeptides 

from insect brain, allatotropins, and allatostatins. These are considered the stimulators or 

inhibitors of the JH synthesis in CA. The CA contains both intrinsic glandular cells as well as 

neurosecretory cells. They are generally innervated from the brain by two pairs of nerves, the 

nervicorporisallati I (NCA I) that originate in the brain and pass through the corpus cardiacum 

(CC) on their way to the CA; and the (NCA II) that originate in the sub-esophageal ganglion 
[8]. Three other nerves, the nervicorporiscardiaci I, II, and III (NCC I, II, and III) originate in 

the brain and enter the CC till reaching the CA. Because JH is not stored in the CA, its release 

is dependent upon synthesis, and this synthesis is rigidly controlled along several avenues. 

IGRs are diverse groups of chemical compounds that are highly active against immature stage 

of insects. They have a good margin of safety to most non-target biota including invertebrates, 

fishes, birds, domestic animals and other wild life. Thus, they will play an important role in 

control programs in the future [9-10]. Diflubenzuron interferes with chitin synthesis in insects 

and kills larval insects by disrupting their growth [11-15]. 
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Also, Chromafenozide has an insecticidal activity by 

disrupting insect moulting. It is very potent against 

Lepidoptera, but weak or inactive against other insect orders 

such as Diptera and Coleoptera [16]. 

Research of endocrinology in insects is important because it 

may offer new methods for disrupting the insect life cycle 

without harm to environment. Accordingly, the aim of the 

present study was to examine the histological and 

ultrastructural changes occurred in the CA of the S. littoralis 

6th larval instar developed from treated of the 4th larval instars 

with sublethal concentrations (LC50) of the two IGRs; 

diflubenzuron and chromafenozide. 

 

2. Material and Methods 

2.1 Maintenance of insect colony 

The stock colony of S. littoralis was obtained from Plant 

Protection Research Instiute, Agricultural Research Center, 

Dokki, Giza. This strain was reared under the technique 

described by El-Defrawy et al. [17].  

 

2.2 Insect growth regulators (IGRs) 

Two analogues of IGRs were used: Diflubenzuron (Product 

name: Dimilin® 48% SC) and Chromafenozide (Product 

name: Virtu® 5%). 

 

2.3 IGRs Application: 

The 4th larval instars of S. littoralis were treated with the 

previously estimated LC50 of diflubenzuron and 

chromafenozide [18]. The CA of the control and treated 6th 

instar larvae were dissected. Histological and ultrastructural 

studies of CA were performed by using the light and 

transmission electron microscopes. 

 

2.4 Light and Transmission electron microscope 

techniques: 

The 6th instar larvae were dissected out in 4% formaldehyde 

and 1% glutaraldehyde (FG) in phosphate buffer solution as 

described by Dykstra et al. [19]. The CA were isolated from the 

freshly dissected larvae and fixed directly in cold FG 

(adjusted at pH 2.2) for 24 hours, then were post fixed in 1% 

osmium tetroxide in 0.1 M phosphate buffer (pH 7.3), 

dehydrated in an ethanolic series culminating in 100% 

acetone, and infiltrated with epoxide resin. After 

polymerization, overnight at 60°C, semithin sections (0.5 µm) 

were stained with 1% toluidine blue in 1% sodium borate and 

examined with light microscope [20-21]. Areas of interest for 

CA tissues were selected and the blocks trimmed accordingly. 

Ultrathin sections (80-90 nm) were cut, mounted on 200 mesh 

copper grids, and stained with uranyl acetate and lead citrate. 

The stained grids were examined and photographed by 

JEOL.JEM-1400-EX-Electron Microscope at the Central 

Laboratory of Faculty of Science, Ain Sham University. 

Statistical analysis section is missing. Provide it. 

 

3. Results 

3.1 Light microscope observations 

Examination of the histological sections, obtained from the 

CA of control specimens revealed normal histological 

architecture. The CA appeared as a compact oval-shaped 

organ (259.375 µm width & 390.625 µm length) contains 

glandular cells, axons and neurons. A rich tracheal network 

supplies CA cells afforded their needs of ventilation. These 

tracheae diffused underneath the outer shell into tracheoles to 

make it wavy, sometimes roughly surfaced gland. The CA can 

be easily differentiated into three main regions; the outermost 

capsule, the cellular cortex and the innermost medulla. 

Surrounding the gland, an acellular fibrous area (5.222 µm) 

delimits the cortex and medulla and consists of an obvious 

fibrous sheath with a rich supply of tracheal network. The 

gland comprises the cortex (37.5 µm) containing neurons with 

axons running parallel with the surface of the gland and the 

glandular cells which contain distinct spheroid nuclei. The 

lucent appearance innermost medulla (167.188 µm width & 

353.125 µm length) has an internal parenchymal matrix which 

contains axons of neurons filling the rest of the gland (Fig. A 

1, 2). 

Examination of the CA sections of diflubenzuron-treated 

larvae showed that the size get reduced (265.625 µm width, 

331.25 µm length) than control and the tracheal supply 

became less. The boundary capsule sheath, became narrower 

(3.38 µm) compared to control and lost its roughly shape. In 

addition, the gland cortex became wider (71.875 µm) and had 

multiple layers of smaller glandular cells and many nerve 

cells. Moreover, neurons appeared reduced in size and 

migrated little inward to the medulla. Also, axons number 

were reduced and sometimes disappeared in medulla (112.745 

µm width, 225.49 µm length) (Fig. A 3, 4). 

Corpora allatum sections from larvae treated with 

chromafenozide revealed numerous histological changes. The 

CA gland appeared severely shrinked (180.625 µm width, 290 

µm length), compared to control with lower tracheal supply. 

Moreover, the fibrous sheath thickness was reduced (3.87 

µm). Also, the gland cortex was increased in size (74.878 µm) 

and the glandular cells became smaller than control. Neurons 

migrated inward far from the sheath. Besides, parenchymal 

matrix of medulla was severely reduced (69.375 µm width, 

178.125 µm length) because of treatment. In addition, the 

glandular cells are appeared in one corner of the gland (Fig. A 

5, 6). 

 

3.2 Ultrastructural observations  
Transmission electron microscopy of CA of normal 6th instar 

larvae displays that the external surface is covered with a 

flocculent, intact acellular capsule or sheath.  Frequently, 

narrow electron lucent spaces were seen among the stroma 

(Fig. B7). Following the sheath, the outer part of the gland, 

the cortex, composed of electron lucent cells, the neurons. 

They are irregular in shape with several branching 

prolongations which interdigitate and associated with other 

glandular cells (Figs. B7, 8). Each neuron contains flattened 

nucleus with several scattered hetero-chromatin and 

euchromatin and enclosed by nuclear envelope. Their 

cytoplasm has numerous mitochondria, they are appeared in 

different shapes; spherical, elongated, dumbbell, oblong and 

rocket-shaped, some of these in state of division (Fig. B8). In 

addition, few intercellular spaces are observed. Multi-

vesicular bodies and smooth endoplasmic reticulum are also 

observed (Fig. B9). Axons of neurons are distributed in the 

parenchymal matrix singular or in groups (Fig. B7). The 

glandular CA cells are lying beneath the outer neurons and 

have a well distinct plasma membrane. The latter encloses the 

ground cytoplasm which containing secretory granules and 

organelles, close to the nucleus. The cell boundaries are easily 

distinguished in most of the preparations and the cytoplasm 

contains free ribosomes, others in cluster form. Scarce rough 

endoplasmic reticulum (RER) is found besides smooth 

endoplasmic ones (SER). The latter is abundantly distributed. 

It is aggregated, sometimes appears winding. Moreover, it is 

found almost near Golgi apparatus and RER to present an aid 

in production of secretory granules (Fig. B10).  
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Mitochondria occur in great numbers, indicating a high 

metabolic activity of the cells. The shape and size of 

mitochondria are varying. They are found near the Golgi 

apparatus, SER, RER and secretory material. Electron dense 

mitochondria is a characteristic feature of the ultrastructure of 

the corpora allata cell cytoplasm. The well-developed cristae 

commonly traverse the mitochondrion as oblique, 

longitudinal, interconnecting and concentric arrangements 

were also seen (Fig. B7-10).  

Many Golgi apparatus are scattered in cytoplasm. They 

usually appeared as stacks of flattened cisternae, frequently 

small vesicles and saccules. The SER, located close to the 

Golgi apparatus, produce small components toward the Golgi 

cisternae, then, it is translocated into Golgi saccules which 

finally joined to produce the secretory granules (Fig. B10). 

The secretory vesicles, found in the ground cytoplasm, 

aggregate and then migrate to the plasma membrane till 

discharging. Frequently, a large granule is surrounded and 

connected with smaller granules. The CA cell nuclei are 

granular bodies of regular spheroid shapes and occupy the 

middle area of cells. Moreover, they have nucleoli and 

irregular chromatic bodies (chromosomes) are also seen, often 

near to their envelopes. Chromatin is scattered into clusters of 

heterochromatin and great distribution of euchromatin. 

Distinct double layer nuclear envelope is distinguished with 

its nuclear pores where it is delimited (Fig. B10). 

Treatment with LC50 of diflubenzuron for 4th larval instars 

induced advanced signs of damage in the CA ultrastructure 

(Figs. C11-14). The diflubenzuron treatment caused changes 

in the capsule, cellular cortex and medulla regions of the CA. 

The fibrous capsule sheath lost its rough shape. Little 

numbers of tracheal supplies were recorded. Neurons of CA 

appeared with no secretory granules. The number of electron 

dense mitochondria was reduced. The neuron nucleus appears 

suffering from pyknosis. Also, extracellular spaces are 

separating neighboring glandular cells with pyknotic nuclei 

(Fig. C11, 12). Few axons were appeared in one group inside 

the cortex and became free of neurosecretory materials. 

Finally, they became aggregated and bundled. The neuron 

cytoplasm showing distribution of different lysosomes; 

primary and secondary lysosomes, which attacking the 

cellular organelles. The glandular cell cytoplasm gives a real 

description of its damage. Glandular cells appeared inactive 

as they are lacking neurosecretory granules. There were few 

fragmented rough endoplasmic reticula vacant from their 

ribosomes. Ribosomes disperse randomly in the ground 

cytoplasm and multi-vesicular body are seen (Fig.C13). Golgi 

apparatus was reduced in number and their cisternae became 

swollen. SER, in turn, were also reduced in number as well as 

mitochondria. Degenerated nuclei of glandular cells displayed 

irregular shapes with ruptured nuclear envelopes which 

reflects the great degree of cellular damage (Fig. C 13, 14). 

CA gland of treated-larvae with Chromafenozide, 20E 

agonist, appeared suffering from damage signs (Fig. D15-17). 

The outer fibrous coating sheath was reduced in size and 

partially separated from basal lamina leaving large space in 

between (Fig. D16). The fibrous sheath became smooth as 

tracheae and tracheoles reduced and migrated inside the 

cortex. Intracellular spaces were scattered in large areas of the 

gland. A characteristic highly electron dense of small-sized 

mitochondria were present. Death of CA was represented in 

scattering of electron dense of different lysosomes (L1, L2 and 

L3) scattered within neuron cytoplasm in great numbers. 

Nuclei of glandular cells appeared pyknotic with electron 

lucent chromatin (Fig. D15). Additionally, cytoplasmic 

prolongations extend parallelly on the neuron cytoplasm and 

large intracellular space is also recorded (Fig. D16). Axons 

were devoid from neurosecretory materials. Multi-vesicular 

bodies were also distributed among the gland cells. Also, 

tracheae and tracheoles are seen in irregular sizes (Figs. D 16, 

17).  

 

   
 

   
 

Fig A (A1-A6): Photomicrographs of Corpus allatum of 6th instar larva, control CA of 6th instar larva (Fig. 1,2), diflubenzuron - treated CA of 

6th instar larvae (Fig. 3,4) and chromafenozide -treated CA of 6th instar larvae. Showing Fibrous sheath (Sh), glandular cells (GC), parenchymal 

matrix (Mx), neurons (Neu), Axons (Ax), tracheae (T) and tracheoles (t). 
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Fig B (B7-B10): Electron micrographs of control corpus allatum of 6th instar larvae. showing fibrous sheath (Sh), neurons (Neu), axons (Ax), 

mitochondria (M), spaces (S), smooth endoplasmic reticulum (SER), rough endoplasmic reticulum (RER), ribosomes (R), multi-vesicular bodies 

(Mvb), nucleu (N) and nuclear envelope (NE). 
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Fig C (C11-C14): Electron micrographs of diflubenzuron - treated corpus allatum of 6th instar larvae.  

Abbreviations: fibrous sheath (Sh), tracheae (T), tracheoles (t), neurons (Neu), mitochondria (M), spaces (S), nucleus (N), tracheae (T), 

tracheoles (t), primary lysosomes (L1), secondary lysosomes (L2), multi-vesicular body (Mvb), axons (Ax), rough endoplasmic reticulum (RER) 

and smooth endoplasmic reticulum (SER) 

 

  
 

 
 

Fig D15-D17: Electron micrographs of chromafenozide -treated corpus allatum of 6th instar larvae.  

showing fibrous sheath (Sh), nucleus (N), mitochondria (M), tracheae (T), lysosomes (Ly), basal lamina (BL), tracheoles (t), different lysosomal 

forms (L1, L2 and L3), multi-vesicular bodies (Mvb), axons (Ax)
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3. Discussion 

The corpus allatum is known as the main source for juvenile 

hormone. Both juvenile hormone and ecdysteroid are 

necessary for insect normal development and for vitellogenin 

(Vg) production in the female reproductive system [6]. 

Juvenile hormone increases the sensitivity of the vitellogenin-

producing tissues to ecdysteroid. Indeed, JH and 20-

hydroxyecdysone (20E) play a gonadotropic role in adult 

insects [22, 23]. The JH regulated 20E titer via the activation of 

the enzyme of its synthesis, ecdysone 20-monooxygenase, 

20E agonist [23].  

In Lepidoptera, female reproduction is regulated either by JH 

or ecdysteroids and it is well-known that JH stimulates 

vitellogenesis [24]. For example, in Psuedaletia unipuncta, 

there is a correlation between release rate of JH from CA and 

Vg synthesis [25] while, vitellogenesis is inhibited in 

decapitated females of Heliothis virescens, which then 

restored after JH treatment [5, 25]. Besides, it was found that 

decapitation of female Choristoneura fumiferana and C. 

rosaceana reduces egg production, while treatment with 

methoprene restores egg production [26]. Similarly, in Diptera, 

it was found that the presence of juvenile hormone is required 

for the ovarian maturation in adult females of Musca 

domestica [27]. Also, it was found that injection of 20E 

elevated vitellogenin levels in ovary-ectomized flies [28] and in 

decapitated flies [29]. In addition, JH is required for oocyte 

development in mosquito, which was blocked by CA removal 

and restored by implantation of CA or JH application [30]. 

The present results revealed that many similarities exist 

between the structure of CA gland in S. littoralis larvae and 

that of diverse insect species. Similar features were reported 

with CA of Mamestra configurat [31]. King et al. = [32] and 

Aggarwal and King = [33] reported similar structures in 

Drosophilla melanogaster larvae and prepupae. Also, in 

stable fly (Stomoxys calcitrans) and tsetse fly (Glossina 

morsitans) [34].  

Concerning normal CA cells, the presence of neural 

components in the capsulated corpora allata of S. littoralis 

larvae, indicates that the activity of this gland may partially 

regulated by the nervous system, as they were found in the 

corpora allata capsule of immature and adult stages of various 

insect species [6, 31, 35]. 

Also, normal CA features with characteristic narrow 

intercellular spaces. Aggarwal and King (1969) [32] suggested 

that spaces may represented repositories of juvenile hormone. 

Therefore, during periods with active JH secretion, hormone 

accumulate temporarily in the cytoplasm. Moreover, Thomsen 

and Thomsen (1970) [36] found intracellular spaces in the 

cytoplasm of CA in females of Calliphora erythrocephala, 

and they suggested that these spaces may represent deposits 

for hormones.  

The presence of mitochondria, with great numbers and 

different sizes and forms, indicates a high metabolic rate of 

gland activity which helps in getting energy to facilitate their 

duty. Whereas, Golgi apparatus is involved in many different 

cellular processes; packaging of secretory materials, 

processing of proteins, synthesis of certain polysaccharides 

and glycolipids, sorting of proteins in the cell, and 

proliferation of membranous elements for the plasma 

membrane. Amino acids are used to produce proteins from the 

RER, then conveyed to the Golgi apparatus for incorporation 

into secretory vesicles as reported by Baehr et al. [37] and 

Sayah [38] in the earwig Lebidura riparia. The presence of 

neurosecretory granules in the ground cytoplasm indicates the 

hormone-release function of CA. As Agui et al. [39] stated that 

the CA in some Lepidoptera species was the release site for 

prothoraciotrophic hormone (PTTH). Ultrastructural study of 

the corpus allatum has revealed that it contains many 

glandular elements. These results agree with Kou et al. [40] 

who observed very large numbers of mitochondria, abundant 

whorled smooth endoplasmic reticulum, irregularly shaped 

nuclei, Golgi bodies and free ribosomes in the CA cells of 

adult females of Leucania ioreyi.  

IGRs can disturb CA neuro-secretions, among these 

regulators are; Diflubenzuron, a chitin synthesis inhibitor, and 

Chromafenozide, a non-steroidal agonist to the insect molting 

hormone 20E. Rentakarn et al. [41] stated that endocrine 

system was found to be affected by IGRs such as 

Tebufenozide which causes damage for the cell organelles 

because of imbalance in hormone secretions. 

In this work, Diflubenzuron and 20E agonist, 

Chromafenozide, affect the JH production via changes in 

corpus allatum structure. The present work showed that tested 

IGRs caused histological and cytopathological changes in the 

CA. Morphological changes in the corpora allata strongly 

suggest variations in the synthetic activity of the gland. These 

results were in accordance with Ronderos [42] who studied the 

corpora allata changes along the Chagas disease vector 

Triatoma infestans 4th instar.  

After administration of the two IGRs, CA cells exhibit 

ultrastructural features of degenerative glands, overall 

abnormal intercellular spaces, pyknotic nuclei, multi-vesicular 

bodies, and malformed of SER and RER. These cytotoxic 

features may lead to decrease of JH levels in the insect 

haemolymph. These results agree with that of the CA cells of 

P. turionellae which had poor organelles such as 

mitochondria, Golgi complex, RER [3]. 

Almost the same observations were reported by Dutta et al. 
[43] who studied the effect of two hormones (JH-III and 20E) 

on ultrastructure of muga silkworms, Antheraea assamensis, 

and found that the oocytes have more empty spaces and there 

are increase in number and size of the mitochondria and 

trachea in the neurosecretory cells. Also, they observed that 

Neuroplasm contained large number of free ribosomes with 

increased deposition of endoplasmic reticulum. 

Bonetti et al. [44] analyzed CA ultrastructure in bees and found 

abundant mitochondria in all stages, larvae, pupae and adults. 

But after application of JH, mitochondria became less which 

possibly indicated the negative effects of hormone 

application. 

IGRs treatments showed reduction in follicular epithelium 

thickness which agreed with the results of Raina et al. [45], 

when they studied the CA ultrastructure of Coptotermes 

formosanus, and found reduction in follicular epithelium 

thickness with extensive vacuolation under it. 

Sedlak [46] stated that lysosomes are responsible for the 

elimination of enzymes and hormone precursors needed for 

hormone production. The present results emphasize that 

action as lysosomes were abundant with different types in the 

treated samples. 

A lower chromatin condensation indicates higher activity of 

nuclear activity of CA, and vice versa [47, 48]. That finding was 

in accordance with the present result where the treated cells 

appeared suffering with pyknotic nucleus.  

Consequently, these cytotoxic effects in larval CA may link to 

the appearance of multi-vesicular bodies, and finally, 

complete inhibition of vitellogenesis in adult stages. These 

findings were like those of Joly [49] on Locusta migratoria, 

and [38] on the earwig Lebidura riparia. The appearance of 

multi-vesicular bodies may be resulting from the 
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transformation of SER, RER, mitochondria and Golgi 

complex, so, low levels of JH may occur.  

Previous researches showed that treatment with the anti-

allatal drug, precocene, blocks ovarian maturation, which 

indicates JH secreted by CA controls maturation of insect 

ovary [50, 51].  Unnithan et al. [52] reported that treatment with 

precocene, an anti-JH, inhibited the egg maturation and CA 

was degenerated in Oncopeltus fasciatus. The same hormone 

showed degenerative effects in CA of L. migratoria nymphs 
[53]. Parallel to our results, precocene-treated L. migratoria 

showed electron dense cells and little cytoplasm with 

increased extracellular spaces. Also, Unnithan et al. [54] found 

segregation of various cytoplasmic organelles, vacuoles, 

residual bodies, pleomorphic mitochondria, irregularly Golgi 

apparatus, clumping of SER in CA of treated precocece II 

bugs.  

The present observation showed that cytoplasm of CA cells 

was filled by secretion granules. Similar result was obtained 

by Rankin et al. [55] who found that CA cells in earwig 

(Euborellia annulipes) are full of secretion granules.  

On the other hand, the present findings are contrary to 

Muszynska-Pytel et al. [56] who found that the ecdysone 

mimic RH 5849 caused allatotrophic activity leading in 

supernumerary larval molts in Galleria mellonella. Besides, 

Ergen [57] did not find any cell destruction in CA of A. 

aegyptium after treatment with precocene II. Similarly, 

treatment by halofenozide against the ground beetle, Harpalus 

pennsylyanicus, had no adverse effect on CA [58]. 

In the present study, Analysis of the corpora allata 

ultrastructure revealed that the application of IGRs altered the 

ultrastructure by decreasing the activity, as seen with fewer 

and small-sized mitochondria and greater chromatin 

condensation, as compared with the control. Application of 

IGRs may interfere with the synthesis of JH by CA.  

The present findings support the idea that the modified 

corpora allata could induce disturbances in oogenesis which 

led to degrees of fecundity reduction. These results were in 

accordance with our previous findings [18]. In which Ovariole 

growth was stunted and vitellogenesis and chorion formation 

were inhibited after the application of IGRs. 

  

4. Conclusion  
From the present study, it can be concluded that treatment 

with diflubenzuron and chromafenozide altered the 

ultrastructure of the corpora allata and can efficiently be used 

in integrated pest management strategies of Egyptian cotton 

leafworm. 
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