Eco-friendly management of Spodoptera litura Fab. using plant products

Sangavi R and R Ravichandran

Abstract

Spodoptera litura is an economically important polyphagous pest in India, China and Japan causing considerable economic loss to many vegetable and field crops since the larvae can defoliate many economically important crops. The overuse of synthetic pesticides to control insect pests leads to physiological resistance and adverse environmental effects, in addition to high operational cost. Insecticides of botanical origin have been reported as useful for control of agricultural and public health insect pests. Present study was designed to study the efficacy of four plant products viz., Neem oil, pungam oil, NSKE, Vasambu powder and an insecticide check (Monocrotophos) against the feeding activity of S. litura, each were taken in different concentrations. Among the products tested, spray application of NSKE 5% followed by neem oil 2% and vasambu 5% were found significantly effective in reducing the feeding activity and thereby exhibited feeding deterrence throughout the period of experimentation.

Keywords: Spodoptera litura, neem oil, NSKE, vasambu, insecticide

Introduction

Chemical pesticides play a prominent role in increasing agricultural production by controlling the insect pests. However, synthetic insecticides possess natural toxicities that impact on the elimination of existing natural enemies and polluting the soil, water, air, food, health of farmers, consumers and environment. Due to indiscriminate use and its impact of chemical insecticides prompted the search for alternate techniques of insect pest management. In this connection, some plants or their constituents have been proposed as alternatives to synthetic insecticides, because they are exempt from regulatory requirements [1]. Plant products have been suggested as best alternative sources for insect control products because some are selective, biodegrade to non-toxic products and have fewer effects on non-target organisms and the environment [2]. These potential new insecticides can be applied to field and greenhouse crops in the same manner as the insecticides currently used. They also provide an alternative for resistance management because certain plant preparations or phytochemicals can be highly effective against insecticide-resistant insect pests [3]. In this context, bioassays were conducted using plant products for effective and eco-friendly management of Spodoptera litura Fab.

Materials and Methods

An experiment was conducted in the Vanavarayar Institute of Agriculture during 2015. In order to determine the efficacy of four plant products viz., Neem oil, pungam oil, NSKE, vasambu powder and an insecticide check (Monocrotophos) against the feeding activity of S. litura, each were taken in different concentrations. Fresh castor leaf discs (7.5 cm diameter) were cut from fully expanded castor leaves. The discs were dipped for 60 seconds in the test solutions. These treated and air-dried leaves were placed in petriplates lined with moist filter paper. In each petriplate, four third instar larvae was released using a camel hair brush and allowed to feed. Progressive consumption of leaf area was measured both in control and in treatments at first, third, fifth day after release of larvae using graphical method. Three replications of each of the treatments with four larvae per replicate were maintained. The mean percent leaf damage and protection in the treatments over control were worked out compared to the damage in control (water dip) as standard. The mean percentage of protected area was computed accordingly.
Results and Discussion

The larval feeding damage was ranged from 3.26 to 74.49 per cent which afforded a corresponding protection ranging from 25.48 to 96.72 per cent. The leaf area consumed in treatments of monocrotophos were independently superior to other treatments followed by NSKE and Neem oil recording 3.57 and 7.17 per cent leaf consumption and 95.16 and 90.31 per cent of leaf protection, respectively. The treatments with Vasambu and Pungam oil recorded 7.69 and 31.65 per cent leaf consumption and it was correspondingly 88.94 and 68.84 per cent respectively and found superior to control. Among the six treatments the insecticide monocrotophos which is equally on par to NSKE recorded 95.59 per cent protection and 3.26 per cent leaf consumption. The present findings were in accordance with Rajendran and Abdul Kareem, 1978 [4] who reported that Neem oil and NSKE emulsions performed significant feeding inhibition against S. litura. Rathikannu [5] reported that the highest percent reduction of defoliator population was noticed after second spray in NSKE 5% (53.34) followed by NEEMAZAL T/S 1% 900 ml ha⁻¹ (49.09) treated plots at 5 DAT. Ramprasad et al. [6] reported that NSKE 5% was found to be effective as fenvalerate (0.01%) against S. litura and Neem oil 3% and NSKE 5% bring about suppression of S. litura on green gram (Estoy et al.,) [7] and on soybean (Soejinto) [8].

Table 1: Eco-friendly management of S. litura using plant products (mean percent consumption and protection

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean percent of protection</th>
<th>Mean percent of protected area</th>
<th>Mean value of protected area</th>
<th>1st day</th>
<th>2nd day</th>
<th>3rd day</th>
<th>Corrected percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean % of protected area</td>
<td></td>
<td>Mean % of protected area</td>
</tr>
<tr>
<td>Neem oil (2%)</td>
<td></td>
<td>79.36</td>
<td>86.56</td>
<td>45.49</td>
<td>92.84</td>
<td>47.52</td>
<td>96.96</td>
</tr>
<tr>
<td>Pungam oil (2%)</td>
<td></td>
<td>35.62</td>
<td>17.58</td>
<td>46.05</td>
<td>93.98</td>
<td>46.53</td>
<td>94.96</td>
</tr>
<tr>
<td>NSKE (5%)</td>
<td></td>
<td>195.25</td>
<td>96.4</td>
<td>45.93</td>
<td>93.74</td>
<td>48.55</td>
<td>99.08</td>
</tr>
<tr>
<td>Vasambu powder (5%)</td>
<td></td>
<td>178.34</td>
<td>87.07</td>
<td>44.70</td>
<td>91.20</td>
<td>47.54</td>
<td>97.02</td>
</tr>
<tr>
<td>Insecticide (2ml)</td>
<td></td>
<td>192.01</td>
<td>94.81</td>
<td>47.72</td>
<td>97.39</td>
<td>48</td>
<td>97.96</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>98.81</td>
<td>48.78</td>
<td>3.43</td>
<td>7.01</td>
<td>10.12</td>
<td>20.65</td>
</tr>
</tbody>
</table>

Conclusion

Laboratory evaluation on the effect of plant products on S. litura revealed that spray application of NSKE 5% followed by Neem oil 2% and vasambu 5% were found significantly effective in reducing the feeding activity and there by exhibited feeding deterreny throughout the period of experimentation.

References

5. Rathikannu S. Bio-ecology, Management of pests of Gloriosa superba (Linn) and Phyllanthus amarus (Schum and Thonn) and influence of insect damage on the medicinal properties. M.Sc (Ag.) Thesis, Tamil Nadu Agricultural University, Coimbatore, 2005, 85.