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Abstract 
An attempt is made to compare the Linear and Non linear time series models.The Box Jenkins Auto 
regressive integrated moving average (ARIMA) and Generalized auto regressive conditional 
heteroscedastic (GARCH) models are studied and applied for modeling and forecasting of Prices and 
Arrivals of Black pepper in Bengaluru Market. Augmented Dickey Fuller (ADF) test is used for testing 
the stationarity of the series. ARCH-LM test is used for testing the volatility. It is found that ARIMA 
model cannot capture the volatility present in the data set whereas GARCH model has successfully 
captured the volatility. Root Mean square error (RMSE), Mean absolute error (MAE) and Mean absolute 
prediction error (MAPE) were computed. The GARCH (2, 1) and GARCH (1, 3) were found to be better 
models in forecasting prices and Arrivals of Black pepper in Bengaluru Market. The values for RMSE, 
MAE and MAPE obtained were smaller than those in ARIMA (1, 1, 1) and ARIMA (1 0 2) models 
respectively for Prices and Arrivals. The AIC and SIC values from GARCH models were smaller than 
that from ARIMA model. Therefore, it shows that GARCH is a better model than ARIMA for estimating 
Monthly Prices and Arrivals of Black Pepper in Bengaluru Market. 
 
Keywords: Modeling, ARIMA, Forecasting, Accuracy, Volatility, GARCH, Differencing 
 
1. Introduction 
Price forecasting is an integral part of commodity trading and price analysis. Quantitative 
accuracy with small errors, along with turning point forecasting power is important for 
evaluating forecasting models. Agricultural commodity production and prices are often 
random as they are largely influenced by eventualities and are highly unpredictable in case of 
natural calamities like droughts, floods, and attacks by pests and diseases. This leads to a 
considerable risk and uncertainty in the process of price modelling and forecasting. 
Forecasting prices and arrivals of agricultural commodities is of utmost importance for 
planning in advance to resist any abnormalities. Forecasting methods anticipate the future 
purchasing actions of consumers by evaluating past revenue and consumer behaviour over the 
previous months or year to discern patterns and develop forecasts for the upcoming months. So 
Forecast of pepper prices are intended to be useful for farmers, policy makers and agribusiness 
industries. In the present era of globalization, management of food security in the agriculture 
dominated developing countries like India needs efficient and reliable food price forecasting 
models more than ever. Sparse and time lag in the data availability in developing economies, 
however, generally necessitate reliance on time series forecasting models. 
The presence of increased volatility in the agricultural commodity prices has become a 
common feature mainly due to globalization. Volatility is of much concern as its presence 
disrupts the normal behaviour of any time-series data and agricultural commodity price series 
is no exception to it. Understanding the nature of agricultural commodity price volatility is 
required for improving agricultural market analysis and policy development. This has led to 
the development and application of many time series models. As a result, modelling and 
forecasting of volatility by nonlinear models has emerged as an important tool for time-series 
analysis. The most commonly used statistical models are the Autoregressive Conditional 
Heteroscedastic (ARCH) models (Engle 1982) [3], Generalized ARCH (GARCH) model 
(Bollerslev1986) [1], Bi linear (BL) time-series models (Granger and Anderson 1978) [5]. 
This study is undertaken with the hypothesis that ARIMA model for forecasting is suitable for 
non-volatile data, as its inability to capture the volatility component more precisely. Whereas 
GARCH models are more versatile in capturing the persistent volatility in the time series data. 
The prices of Black Pepper are more volatile than cereal commodities in India as evident from 
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The time series data. Therefore, in the present study, 
univariate ARIMA and GARCH models were fitted to 
identify better forecast for prices and Arrivals of Black 
Pepper in Bengaluru Market. To this end, the forecast 
performance was compared on the basis of Mean square 
prediction error (MAPE), mean absolute prediction error 
(MAE) and Root mean square errors (RMSE). 
 
2. Materials and Methods 
Monthly secondary data for prices and arrivals of Black 
pepper (2003-2017) will be collected from the Karnataka 
State Agricultural Marketing Board, Yeshwanthpur Bangalore 
Karnataka.  
 
2.1 Description of Models 
ARIMA models are capable of representing stationary as well 
as non-stationary time series (Box et al., 2007) [2]. GARCH) 
model is capable to capture volatility in time series data. 
Thus, both models were fitted to the Gram prices and their 
performances were compared. 
 
 2.1.1 The ARIMA Model 
The Autoregressive moving average (ARMA) model, denoted 
as ARMA (p, q), is given by 
 

 qtqtttptpttt wyyy    ......... 22112211  
 

 Or equivalently by t
t ByB  )()( 0    

Where p
p BBBB   .......1)( 2

21  and  

q
q BBBB   .......1)( 2

21   
 
In the above, B is the backshift operator defined by

1 tt yBy . 

A generalization of ARMA models, which incorporates a 
wide class of non-stationary time-series, is obtained by 
introducing “differencing” in the model. The simplest 
example of a non-stationary process which reduces to a 
stationary one after differencing is “Random Walk”. A 

process { ty
 } is said to follow Autoregressive integrated 

moving average (ARIMA), denoted by ARIMA (p, d, q), if 

t
d

t
d By )1(   is ARMA (p, q). The model is written as 

tt
d ByBB  )()1)((   where t  are identically and 

independently distributed as ),0( 2N . The integration 

parameter d is a non-negative integer. When d = 0, the 
ARIMA (p, d, q) model reduces to ARMA (p, q) model. 
 
2.1.2 The GARCH Model 
Autoregressive conditional heteroscedastic (ARCH) models 
are used whenever there is reason to believe that, at any point 
in a series, the terms will have a characteristic size, or 
variance. In particular ARCH models assume the variance of 
the current error term to be a function of the actual sizes of 
the previous time periods’ error terms. Often, the variance is 
related to the squares of the previous innovations. ARCH 
models are generally employed in modeling financial time 
series that exhibit time-varying volatility clustering. If an 
ARMA model is assumed for the error variance, the model is 
called a generalized auto regressive conditional 
heteroscedasticity (GARCH) model (Bollerslev, 1986) [1]. 

The ARCH (q) model for the series { t } is defined by 

specifying the conditional distribution of t  given the 

information available up to time 1t . Let 1t
denote this 

information. ARCH (q) model for the series t is given by 
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satisfied to ensure non-negative and finite unconditional 

variance of stationary { t } series.  

Bollerslev (1986) [1] proposed Generalized ARCH model 
(GARCH) model, in which conditional variance is also a 
linear function of its own lags and has the form. 
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2.1.2.1 Estimation of Parameters 
Estimation of parameters for ARIMA model is generally done 
through nonlinear least squares method. Fortunately, several 
software packages are available for fitting of ARIMA models. 
In this paper, SPSS and R software package is used. The 
Akaike information criterion (AIC) and Bayesian information 
criterion (BIC) values for ARIMA model are computed by 
 

)1(2)log( 2  qpTAIC   And 
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Where T  denotes the number of observations used for 

estimation of parameters and 
2  denotes the Mean square 

error. 
In order to estimate the parameters of GARCH model, 
Method of maximum likelihood is used. The log likelihood 
function of a sample of T observations, apart from constant, is  
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If (.)f denotes the probability density function of t , 
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generally, maximum likelihood estimators are derived by 
minimizing 
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 (Fan and Yao 2003) 

[4]. For heavy tailed error distribution, Peng and Yao (2003) [6] 
proposed least absolute deviations estimation (LADE) which 

minimizes the 
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 where 1 pv , if 
0q and 1 pv  if 0q . Fan and Yao (2003) [4] and 

Straumann (2005) [7] have given a good description of various 
estimation procedures for conditionally heteroscedastic time-
series models. 
The Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) values for GARCH model with 
Gaussian distributed errors are computed by 
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Where T is the total number of observations. 
 
Evidently, the likelihood equations are extremely 
complicated. Fortunately, the estimates can be obtained by 
using a software package, like E Views, SAS, SPLUS 
GARCH, GAUSS, TSP, MATLAB, and RATS. In the present 
investigation, the Gaussian maximum likelihood estimation 
procedure available in E Views software package, Ver. 8 is 
used for data analysis 
 
2.1.2.2 Testing for ARCH Effects 

Let ttt y  
 be the residuals of the mean equation the 

squared series 
}{ 2

t is then used to check for conditional 
heteroscedasticity, which is also known as the ARCH effects. 
The test for conditional heteroscedasticity is the Lagrange 
multiplier test of Engle (1982) [3]. This test is equivalent to 

usual F statistic for testing 
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asymptotically distributed as chi squared distribution with 
qdegrees of freedom under the null hypothesis. The decision 

rule is to reject the null hypothesis if 
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)(2 q is the upper 
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2
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3. Results and Discussion 
The price and Arrivals series on Black Pepper roofed monthly 
data from 2003 January, to October, 2017(5 month data set 
used for validation of the result). An ARIMA model was 
attempted using the SPSS 23.0 and R statistical packages, 
Whereas GARCH model was fitted using E-Views software 
version 8. These models were then used to forecast five 
month out-of-sample set. 
Augmented Dickey Fuller test was applied to the Black 
pepper price series of Bengaluru Market to test the null 
hypothesis that the series has unit root or non-stationary. The 
results are given in Table 1. The result shows that the series 
has unit root. The alternative hypothesis is true. Thus, data 
series was subjected to first differencing to make the data 
stationary. The results of differenced series indicated that 
the‘t -Statistic’ obtained for price series is not significant, we 
are bound to reject the null hypothesis and the alternative 
hypothesis of stationary series is true. The Black pepper price 
series became stationary at one differencing and the data is 
now ready for further econometric analysis. 
 

Table 1: Augmented Dickey-Fuller Stationarity Test for Black 
Pepper prices of Bengaluru Market 

 

Level data At First Difference 
 t-Statistic Prob* t-Statistic Prob* 

ADF Test value -1.072 0.726 -15.220 0.000*
1% Level -3.466  -3.467  
5% Level -2.877  -2.877  
10% Level -2.575  -2.575  

*MacKinnon (1996) one-sided p-values. 
  
3.1 Estimation of ARIMA model 
Estimated parameters for a tentative model were selected on 
the basis of significance level of AR and MA terms given in 
Table 2. In this particular case one Auto Regressive and 
moving average terms were found to be statistically 
significant i.e. ARIMA (1, 1, 1). The estimates equation 
obtained in the model as follows: 
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Table 2: Estimate of the ARIMA Model parameters for Black 
Pepper prices of Bengaluru Market 

 

 Estimate SE Test stat. Sig. 
Difference 1    
AR Lag 1 -0.932 0.068 -13.804 0.000
MA Lag1 -0.847 0.099 -8.524 0.000

 
ARCH Lagrange Multiplier (LM) test, a heteroscedastic test 
developed by Engle (1982) [3], was used to determine the 
presence of ARCH effect in the residuals. From Figure.1 we 
can observed that there are periods where the residuals 
fluctuate heavily, means it has periods of high volatility 
followed with periods of low volatility, so we can expect 
ARCH/GARCH effect for this series. This ARCH/GARCH 
effect confirmed through Lagrange Multiplier (LM) test. 
From table3 we can observe significance of Lagrange 
Multiplier (LM) test at 1 per cent level of significance. So, 
overall we say that there is ARCH/GARCH effect for this 
series. 
 

Table 3: Heteroscedasticity Test for Black Pepper Prices of 
Bengaluru Market 

 

Lagrange Multiplier (LM) Test 
Obs* R2 

44.58 0.000* 

 

 
 

Fig 1: Residual plot of AR (1) process for Black Pepper price of 
Bengaluru Market 

 
3.2 Specifying a Mean Equation 
In this study both AIC and Schwartz Criterion were employed 
to select an appropriate Mean model for the sample of the 
data available. Table 4 displays the summaries of the AIC and 
Schwartz Criterion of different AR models. AR (1) model 
exhibits lesser AIC and Schwartz criterion, so it is selected as 
the best order among different AR orders. 
 
Table 4: Autoregressive Model selection for the Black Pepper prices 

of Bengaluru Market Using AIC and SBC 
 

 Akaike Info. Criterion Schwartz Criterion 
AR (1) 22.495 22.548 
AR (2) 22.537 22.608 
AR (3) 22.571 22.659 
AR (4) 22.599 22.705 
AR (5) 22.623 22.747 

 
3.3 Specifying a Volatility Model 
In this study both AIC and Schwartz criterion were employed 
to select an appropriate GARCH model for the Sample of the 
data available. Table 5 displays the summaries of the AIC and 
Schwartz Criterion of different GARCH models. GARCH (2, 
1) model exhibits lesser AIC and Schwartz Criterion. So, we 
selected it as the best model among different GARCH models. 

Table 5: GARCH Model selection for the Black Pepper Price of 
Bengaluru Market Using AIC and SBC 

 

 Akaike Info. Criterion Schwartz Criterion 
GARCH (0,1) 22.884 22.937 
GARCH (1.1) 22.294 22.365 
GARCH (1,2) 22.220 22.308 
GARCH (2,1) 21.883 21.971 
GARCH (2,2) 22.095 22.201 

 
3.4 Simultaneous Estimation of the Mean and Volatility 
Equations 
Simultaneously model the mean and variance of Somwarpet 
Arrivals GARCH models for conditional variance was 
considered. Table 6 shows result of the estimated parameters 
of both the mean and volatility equations.  
The estimates of GARCH (2, 1) model shows that all the 
coefficients of mean and variance equation are statistically 
significant at both 1% and 5% level of significance. α2>0 and 
β1>0 so, this model satisfied sufficient condition for the 
conditional variance. This model satisfied sufficient condition 
for the conditional variance as given in equation 4.1. 
 

Table 6: AR-GARCH Model selection for the Black Pepper Price 
for Bengaluru Market Using AIC and SBC 

 

 Coefficient Std. Error Z-Statistics Prob.
Mean Equation 

0 28670.01 202099.70 0.1418 0.387

1 0.9840 0.120 8.177 0.000*

Variance Equation 

0 3.40 0.603 5.557 0.000*

1 0.304 0.3418 0.8909 0.373

2 0.666 0.5482 1.2161 0.223

1 0.651 0.296 2.003 0.027*

R2 0.9743 
Akaike info criterion 21.059 

Schwartz criterion 21.167 
Durbin-Watson stat 2.242 

 
2

1
2

2
2

1
2 651.0666.0304.040.3   tttt 

…… (1) 
Similarly Augmented Dickey Fuller test was applied to the 
Black pepper Arrivals series of Bengaluru Market to test the 
null hypothesis that the series has unit root or non-stationary. 
The results are given in Table 7. The result shows that the 
series has no unit root. The Black pepper Arrivals original 
series is in Stationary so differencing is not required and the 
data is ready for further econometric analysis. 
 

Table 7: Augmented Dickey-Fuller Stationarity Test for Black 
Pepper Arrivals of Bengaluru Market. 

 

Level data At First Difference 
 t-Statistic Prob* t-Statistic Prob* 

ADF Test value -8.865 0.000*   
1% Level -3.467    
5% Level -2.877    

10% Level -2.575    
 
3.5 Estimation of ARIMA model 
Estimated parameters for a tentative model were selected on 
the basis of significance level of AR and MA terms given in 
Table 8. In this particular case one Auto Regressive, two non-
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seasonal moving average terms were found to be statistically 
significant. The estimates equation obtained in the model as 
follows: 
 

Table 8: Estimate of the ARIMA Model parameters for Black 
Pepper Arrivals of Bengaluru Market 

 

 Estimate SE Test stat. Sig. 
AR Lag1 0.920 0.075 12.322 0.000 
MA Lag 1 0.580 0.111 5.245 0.000 
MA Lag2 0.189 0.091 2.083 0.039 

 
we check for the ARCH effect for Arrivals, From Figure 2, 
we can observed that there are periods where the residuals 
fluctuate heavily, means it has periods of high volatility 
followed with periods of low volatility, so we can expect 
ARCH/GARCH effect for this series. This ARCH/GARCH 
effect confirmed through Lagrange Multiplier (LM) test. 
From table 9 we can observe significance of Lagrange 
Multiplier (LM) test at 1 per cent level of significance. So, 
overall we say that there is ARCH/GARCH effect for this 
series. 
 

 
 

Fig 2: Residual plot of AR (1) process for Black Pepper Arrivals 
 

Table 9: Heteroscedasticity Test for Black Pepper Arrivals in 
Bengaluru Market 

 

Lagrange Multiplier (LM) Test 
Obs* R-Squared 

7.882 0.005* 

 
3.6 Specifying a Mean Equation 
In this study both AIC and Schwartz Criterion were employed 
to select an appropriate Mean model for the sample of the 
data available. Table 10 displays the summaries of the AIC 
and Schwartz Criterion of different AR models. AR (1) model 
exhibits lesser AIC and Schwartz criterion, so it is selected as 
the best order among different AR orders. 
 

Table 10: Autoregressive Model selection for the Black Pepper 
Arrivals Using AIC and SBC 

 

 Akaike Info. Criterion Schwartz Criterion 
AR (1) 11.378 11.435 
AR (2) 11.380 11.449 
AR (3) 11.389 11.478 
AR (4) 11.395 11.502 
AR (5) 11.403 11.528 

 
By examining ACF of Residual Square in fig 3, we can 
observe sudden decay of auto correlation after first order. So 
it can be removed by adopting GARCH, one series. 

3.7 Specifying a Volatility Model 
In this study both AIC and Schwartz criterion were employed 
to select an appropriate GARCH model for the Sample of the 
data available. Table 11 displays the summaries of the AIC 
and Schwartz Criterion of different GARCH models. GARCH 
(1, 3) model exhibits lesser AIC and Schwartz Criterion. So, 
we selected it as the best model among different GARCH 
models. 
 

Table 11: GARCH Model selection for the Black Pepper Arrivals 
Using AIC and SBC 

 

 Akaike Info. Criterion Schwartz Criterion 
GARCH (0,1) 11.435 11.488 
GARCH (0,3) 11.445 11.534 
GARCH (1.1) 11.378 11.450 
GARCH (1,2) 11.388 11.478 
GARCH (1,3) 11.320 11.427 
GARCH (2,1) 11.389 11.478 
GARCH (2,2) 11.412 11.519 

 

 
 

Fig 3: Auto correlations at different lags of Residuals squared Black 
Pepper Arrivals 

 

 
 

Fig 4: estimated conditional standard deviation from a GARCH (1, 
3) model 

 
3.8 Simultaneous Estimation of the Mean and Volatility 
Equations 
Simultaneously model the mean and variance of Somwarpet 
Arrivals GARCH models for conditional variance was 
considered. Table 12 shows result of the estimated parameters 
of both the mean and volatility equations.  
The estimates of GARCH (1, 3) model shows that all the 
coefficients of mean and variance equation are statistically 
significant at both 1% and 5% level of significance. α1>0 and 
β3>0 so, this model satisfied sufficient condition for the 
conditional variance as given in equation 4.2. 
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Table 12: Parameter Estimates of AR-GARCH (1, 3) model for 
Black Pepper arrivals in Bengaluru Market 

 

 Coefficient Std. Error Z-Statistics Prob.
Mean Equation 

0  
70.060 8.943 7.833 0.000

1  
0.355 0.083 4.245 0.000

Variance Equation 

0  
3347.136 416.698 8.032 0.000

1  
0.102 0.037 2.690 0.007

1  
0.363 0.068 5.342 0.000

2  
0.441 0.0723 6.103 0.000

3  
0.721 0.110 6.517 0.000

R2 0.594 
Akaike info criterion 11.151 

Schwartz criterion 11.277 
Dubbin-Watson stat 1.960 

  
2

3
2

2
2

1
2

1
2 0.7210.4410.3630.1023347.136   ttttt   (2) 

 
4. Evaluation of forecast performances of ARIMA and 
GARCH models 
The RMSE, MAPE and MAE values were obtained from 
estimated equations for both ARIMA and GARCH models 
presented in Table 12. All the Accuracy statistics values from 
GARCH model were smaller than that of ARIMA model. 
Therefore, it is concluded GARCH model performed better 
than ARIMA model in case of volatile data so, GARCH 
model performed better than ARIMA for modeling and 
forecasting of monthly prices and Arrivals of black pepper in 
Bengaluru market. 
 

Table 12: Forecast Accuracy of Bengaluru Market Prices and 
Arrivals using ARIMA and GARCH 

 

Month 
Bengaluru Prices Bengaluru Arrivals 

Actual ARIMA GARCH Actual ARIMA GARCH
June-17 57000 54097.69 52610.9 20 36.68 57.598 
July -17 53000 54108.69 51134.9 50 39.81 52.267 
Aug -17 51500 55289.88 49658.9 120 43.95 62.930 
Sep -17 50000 55533.89 48182.9 180 48.02 87.811 
Oct -17 48500 56799.88 47198.9 110 52.02 109.137

Accuracy 
statistics 

RMSE 6643.72 940.44 RMSE 73.411 51.33 
MAPE 6165.00 877.74 MAPE 58.637 58.41 
MAE 12.748 1.77 MAE 58.576 37.99 

 
5. Conclusion 
ARIMA model was applied for forecasting Black pepper 
prices and Arrivals gives reasonable and acceptable forecasts. 
But, it did not perform very well when there exist volatility in 
the data series. GARCH model was also fitted to forecast 
Black pepper prices and Arrivals. The GARCH model 
performs better on account of its ability to capture the 
volatility by the time varying conditional variance. The 
GARCH was found to be a better model than ARIMA in 
forecasting Black pepper prices and Arrivals because the 
values for RMSE, MAE and MAPE calculated using GARCH 
model were lesser than ARIMA model. The deviations 
between actual and forecasted Gram prices were little in 
GARCH model. Therefore, it is suggested that GARCH 
model is a better model than ARIMA for forecasting volatile 
prices. 
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