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Abstract 
The nutrition and survival of insects are regulated by tiny microbes inhabiting in close association with 

them, known as symbionts, either ectosymbionts or endosymbionts. Endosymbionts may be again 

categorised into 2 types such as extra-cellular and intracellular symbionts. These may be described as 

primary/ P-type/obligatory and secondary/S- type/facultative symbionts. Depending on their role in 

survival, reproduction/ defence, they are useful in nutritional and non-nutritional roles in insects. This 

behaviour of endosymbionts can be further manipulated to develop para-transgenic insects, which are 

modified genetically. Due to developed biotechnological and biochemical studies, the detailed study on 

endosymbionts has been carried out and this knowledge can be further helpful in pest management 

approaches. 
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Introduction 

The abundance and wider adaptability of insects has made the survival of this tiny creatures 

over range of habitats possible. One of the reasons, attributing to its success is to efficiently 

utilise the nutrient deficient food. In this context, some organisms inhabiting inside the 

insect/its nesting structures are sharing mutualistic association, that lead to enormous success 

of the insects [1]. Many of the insects have been reported to feed on nutritionally deficient diets, 

that are being supplied by the inhabitant microorganisms. Therefore, the sympatric evolution 

of the microorganisms along with its host insects had always been an interesting topic to carry 

out research [2]. Either these symbionts are directly helpful in supplementing the metabolic 

needs or indirectly helpful through providing defence to the host insects [3-5]. Symbiosis, the 

beneficial association between insects and different micro-organisms has been coined first 

time by Anton de Bary in 1879 [6]. Thus symbiosis, a potential interaction lies somewhere in 

between parasitism and mutualism [7, 8]. Many micro flora are directly beneficial to insects by 

helping them to digest low nutrient diets [9-11], such as phloem sap, blood of animals etc [12-15]. 

Symbiosis may be of 2 types, i.e. ectosymbiosis (if the symbiont lives inside the nest of host 

insect but outside its body) and endosymbiosis (inside the host insect body). Again, the 

endosymbionts can be differentiated into 2 types, such as extracellular symbionts i.e. 

symbionts inhabiting inside the gut or any other organ without any specialized cells and 

intracellular symbionts, where the symbionts live in close association with the host in 

specialized cells [16, 17]. After, the separation of symbionts from the insects, it becomes difficult 

to survive, so their identification and further research on their development becomes a 

daunting task, but the study of symbionts had gained a great momentum in recent years due to 

development of different molecular techniques. 
 

Classification of symbionts 
 

Table 1: Classification of symbionts depending on the location of endosymbionts 
 

Ectosymbiosis Endosymbiosis 

i. Ectosymbiosis (if the symbiont lives inside 

the nest of host insect but outside its body) 

ii. e.g. Ambrosia Beetles-Subfamilies 

Scolytinae and Platypodinae; 

Ant Subfamily Myrmicinae-Attine; 

Termites Subfamily Macrotermitinae. 

i. Endosymbiosis (if the symbiont lives inside the host insect 

body) 

ii. Endosymbionts can be differentiated into 2 types 

a. Extracellular symbionts i.e. symbionts inhabiting inside the gut 

or any other organ without any specialized cells. e.g. Sodalis, 

Nocardia 

b. Intracellular symbionts, where the symbionts live in close 

association with the host in specialized cells. e.g. Buchnera, 

Wigglesworthia 
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Table 2: Classification of symbionts depending on the association with the host 
 

Primary endosymbiont and Secondary endosymbiont 

i. Primary endosymbionts are associated with the host from many million 

years ago 

ii. e.g. Pea aphid, Acyrthosiphon pisum and Buchnera, tsetse fly, Glossina 

morsitans and Wigglesworthia glossinidia brevipalpis and endosymbiotic 

protists in lower termites 

i. Secondary endosymbionts exhibit a more recently 

developed association 

ii. e.g. Pea aphid Acyrthosiphon pisum and Ragiella 

insecticola, Hamiltonella defensa and Serratia 

symbiotica 

 

External Symbionts 

1. Fungus-Growing Insects 

Insects from orders Isoptera, Hymenoptera and Coleoptera 

had developed an ability to utilise abundant resources that 

were previously inaccessible by cultivating special species of 

certain fungi, further some of which has evolved as important 

pests in different forest ecosystems [18]. A group of beetles 

belong to Scolytinae and Platypodinae known as, Ambrosia 

beetles [19] which bore long galleries in woods had been 

reported to have body compartments that are shallow and 

simple/complex invaginations associated with specialized 

glandular cells to carry the beneficial fungi [20]. Thus, the term 

mycangia, for example, has been applied to structures such as 

the double slots in thorax of Dentroctonus frontalis 

Zimmermann [21], scores on the head of Scolytus ventralis 

LeConte [22], and paths in feathery arrows of Pityoborus spp. 
[23]. Furthermore, some authors also have termed it as pseudo-

mycangia which have no link with the glandular structures. 

The inter-relationship between the fungus and beetles have 

been observed to be mutualistic as the fungus weakens the 

plant facilitating the beetle feeding process and the insect is 

helpful in transmission and spread of the fungus [24-26]. As the 

beetles are dependent on wood for their food and survival, but 

it is a poor source of vitamins, sterols and other nutrients, and 

fungi convert this nutritionally deficient food into more 

digestible forms [20]. 

 

Ant Subfamily Myrmicinae -Attine 

These ants construct chambers using leaves and flower 

fragments and cultivate the fungi. Similar to beetles, they also 

utilise the fungi to access the nutrient deficient diet and 

similarly the fungi also gain transport and spread by the ants. 

 

Termites Subfamily Macrotermitinae 

Among over 2,600 species of termites, only the subfamily 

Macrotermitinae family Termitidae, with approximately 330 

known species, developed a symbiotic relationship with fungi 

of the genus Termitomyces, and became most important 

decomposer of the world [27, 28]. The woods are rich source of 

lignin, which is difficult to be digested by the termites, thus 

the fungi enable the termites to digest the lignin present in 

plants. 

 

2. Internal Symbionts 

Different insects have reported to modify their organ 

structures to harbour the internal symbionts [10, 29-31]. The 

bacterial flora inhabiting inside the gut are mostly gram-

negative and coliform [17, 32]. 

 

Protozoa 

In 1923, the cellulose-based food of termites was related to a 

mutualism association with intestinal protozoa have been 

identified by American zoologist L. R. Cleveland [33, 34]. These 

protozoans are helpful in digestion of cellulose in termites 

which otherwise, is undigestible by the termites itself [33-36]. 

Although basal termites present endogenous cellulases, 

enzymes from the symbiont are needed to support the 

metabolism of the host [37]. This explains why basal termites, 

although producing endogenous enzymes, are dependent on 

protozoan for survival on a diet of cellulose. 

 

Primary or Essential Symbionts 

There are 10% of the insects which harbour intracellular 

symbionts for their survival and development. Primary 

symbionts may be defined as, symbionts that are essential for 

the reproduction and survival of the host and they reside in 

specialised cells inside the insects [38]. These cells are known 

as mycetocytes/ bacteriocytes. As the earliest discovery of 

these symbionts dates back was a fungus so the terms 

mycetocytes develop [38, 39]. Thus, the cells harbouring 

bacteria as primary or P- type endosymbionts can also 

properly be named as bacteriocytes [1]. Examples of obligate 

intracellular symbionts are Buchnera in aphids, 

Wigglesworthia in Glossina flies [40], Blochmannia in ants [41-

43], Carsonella in psyllids [44], and Blattabacterium in 

cockroaches [45]. These bacteria live exclusively within host 

cells and are vertically transmitted to descendants. 

 

Buchnera 

The nutritionally deficient phloem sap is the major food 

source for the Hemiptera, in Sternorrhyncha, and in 

Auchenorrhyncha [46]. Thus, they need endosymbionts for 

supplementing their nutrition. Buchnera aphidicola is a gram-

negative protobacteria that dominates aphid microbiota and 

represents over 90% of all microbial cells in the insect tissues. 

This bacterium lives inside large polyploidy cells called 

bacteriocytes, which are grouped into structures called 

bacteriomes, located adjacent to ovarioles. Buchnera within 

each Buchnera cell are separated from cytoplasmic contents 

by a membrane originating from the host cell called 

symbiosome membrane [47]. These bacteria are transferred, 

vertically, directly from female to offspring during the 

blastoderm [48, 49]. The phloem sap although a richer source of 

sugar, lipids yet deficient in amino acids. The relationship 

between the essential and nonessential amino acids is around 

1:4 to 1:20 in the phloem. This relationship is considered low 

when compared with the ratio of 1:1 in animal proteins; 

consequently, the essential amino acid content in phloem sap 

is insufficient to support the growth and development of 

aphids [50]. 

 

Wigglesworthia 

The tsetse fly Glossina spp. (Diptera: Glossinidae), an 

important vector of protozoa that causes sleeping sickness in 

humans feed exclusively on blood during different 

developmental stages. Thus, the nutritional deficiencies are 

need to be supplemented by the symbionts. In this regard, 

Wigglesworthia has the ability to synthesize various vitamins, 

including biotin, thiazole, lipoic acid, FAD (riboflavin, B2), 

folate, pantothenate, thiamine (B1), pirodixina (B6), proto-

heme iron, and nicotianamine [51] has been reported to 

supplement nutritionally the insect. Wigglesworthia lives in 
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bacteriocytes in the hind gut/ proctodeum and are reported to 

transmitted to the larva via secretion of milk glands [52]. 

 

Blochmannia 

This obligatory endosymbiont was reported to be associated 

with ants of the genera Polyrhachis, Colobopsis, and 

Camponotus [41, 42, 53-55], but it has been exclusively studied in 

Camponotus, a genus specialized in plant secretions and 

exudates from aphids [56]. Aphids, that feed on nutritionally 

deficient diets secrete out sugar rich honey dew, that are eaten 

by these ants, thus sharing a close relationship with the aphids 
[56]. Even though, the honey dew is nutritionally rich in amino 

acids, yet the intracellular symbionts, Blochmannia genome 

retains genes that allow the biosynthesis of all nine essential 

amino acids and fatty acids, suggesting that the bacterium has 

a role in ant nutrition [57]. 

 

Sitophilus Oryzae Primary endosymbiont (SOPe) 

Sitophilus (Coleoptera: Curculionidae), rice weevil larvae 

feed mainly on albumen cereals, which have nutritional 

deficiencies such as pantothenic acid, biotin, and riboflavin, 

aromatic amino acids, phenylalanine, and tyrosine [58]. The 

primary intracellular symbiont of the genus Sitophilus 

(Coleoptera: Curculionidae) was called SOPE (Sitophilus 

oryzae primary endosymbiont) [59], a gram-negative bacterium 

found in bacteriomes in larvae and in the ovaries of adults. 

The symbionts are present in an apical bacteriome in ovaries 

and thereby transmit the symbiont to progeny. 

 

Secondary Symbionts  

Other than, providing insects with sufficient nutrition, these 

endosymbionts also have some secondary yet important role 

in insects such as temperature tolerance [60-62], and increased 

resistance against development of parasitoids in aphids [63]. 

Furthermore, it can be said that these facultative symbionts 

represent an intermediate between a free-living style of 

obligatory symbiosis, in which vertical transmission of micro-

organisms occur from parents to offspring and the parasite, in 

which optional mode transmission has typically been 

associated with virulence [64]. Many Heteropteran families 

such as Alydidae, Phyrrochoridae, Acanthosomatidae, 

Scutelleridae, Plataspidae, Pentatomidae, Coreidae, and 

Parastrachiidae [32, 65-71] have certain modifications in the 

digestive tracts called as caeca or bacterial crypts that houses 

large number of bacterial symbionts. The vertical 

transmission of the endosymbionts has been proposed and 

elaborated by Buchner in 1965 [48] that the symbionts present 

on the egg masses were vertically transmitted from the 

females and acquired orally by the first instar. After which, 

they reach the gastric caeca and stay there. The genus 

Triatoma (Hemiptera), because of haematophagy, deficient in 

nutrients is dependent on symbiotic bacteria that are 

transmitted within the population via coprophagy. The first 

microorganism identified was the bacteria symbiont 

Rhodococcus rhodnii, an actinomycete, discovered in 

Rhodnius prolixus Stal [72]. Thus, the endosymbionts 

supplement their host nutritionally with amino acids and 

vitamins B complex [48, 73]. Any deprivation of the symbionts 

will lead to damage to the host, such as sterility, reduced 

growth, and lower longevity [73]. 

 

3. Non-nutritional Symbiotic Interactions 

Other than, the aforementioned roles of endosymbionts of the 

primary and secondary endosymbionts in nutrition, 

reproduction and defence some other roles also have been 

discovered. Out of which, Wolbachia, a protobacteria that 

infects the reproductive organs of many arthropods is 

important. It may be transmitted horizontally and vertically by 

maternal transference [74, 75]. Hosts infected with Wolbachia 

may suffer reproductive incompatibility, parthenogenesis, and 

feminization [1, 76]. Wolbachia is generally not necessary for 

host survival, but in some hosts, it acts as an obligate 

symbiont [77]. Recent estimates reported that 66% of insect 

species are infected with Wolbachia [78]. Another 

microorganism called CFB or CLO was discovered and also 

causes reproductive disturbances to hosts [79]. These 

microorganisms have essential role in the speciation of many 

arthropods [80], yet, apparently their presence does not 

guarantee a better performance of the host. Studies on the 

mechanisms of Wolbachia genome provided new information 

on how the integration occurs and the host–symbiont 

consequences [4]. 

 

Conclusion 

The studies on diverse symbionts including ectosymbionts 

and endosymbionts are useful in deciphering their critical role 

in insect life cycle, survival and reproduction. Thus, this 

information can be useful in genetically modifying the 

internal inhabitants through para-transgenesis and thus this 

evolved approach can be mass utilised by scientists to develop 

an eco-friendly method to control pest population non-

chemically. 
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