Evaluation of three different methods of viral DNA extraction for molecular detection of canine parvo virus-2 from faecal samples of dogs

Dhruv Desai, Irshadullah J Kalyani, Umed Ramani, Pushpa Makwana, Dharmesh Patel and Jignesh Vala

Abstract

The present study was undertaken to evaluate viral DNA extraction methods for fast, rapid and accurate diagnosis of canine parvovirus-2 (CPV). The usual extraction methods are costly and time consuming. CPV is a non-enveloped, single-stranded DNA virus causing hemorrhagic diarrhea in puppies. Three different methods, Phenol-Chloroform Isoamyl alcohol (PCI) extraction method, PureLink™ Viral RNA/DNA Mini Kit and Boiling-Snap chilling methods were evaluated for the DNA extraction, DNA purity, time duration and diagnostic efficacy by CPV specific polymerase chain reaction using extracted DNA. The conventional and kit methods were used by following the conventional protocol and kit manual method respectively. Boiling-Snap chilling method was standardized in laboratory for viral DNA extraction. All three methods were efficiently extracted DNA and detection was made reliable by three methods. The conventional DNA extraction method required more time duration and tedious, whereas kit method comparatively easy and less time consuming. While boiling-snap chilling is far better and best than other both methods, as it is not using any chemical and very quick. It simply followed the boiling and chilling principle for inactivation of inhibitors, nuclease, protease and different enzymes that interfere DNA polymerase. Hence, Boiling-Snap chilling method is concluded to be the best method for CPV DNA extraction and reliable.

Keywords: CPV, boiling-snap chilling, DNA extraction, Kit method, PCI method

Introduction

Canine Parvo virus-2 (CPV) is icosahedral non-enveloped, single stranded DNA virus belong to genus Parvovirus under subfamily Parvovirinae, family Parvoviridae [1]. Genome encodes for two structural proteins VP1 and VP2. VP2 is viral entry ligand and encoded within VP1 gene [3]. The virus was emerged from Feline panleukopenia virus in 1978. CPV is a major causative infectious pathogen of dogs and causes acute gastroenteritis that may worsen to death. Due to high mortality of disease, rapid and molecular diagnosis of the disease is highly required [10]. Diagnosis of CPV now a day more advances in terms of user adaptability, rapidity, accuracy and reliability. Immunochromatography based strip test and dot blot ELISA are mostly preferred. SNAP Parvo Test (IDEXX Laboratories, Inc., USA) and strip test are used in almost established veterinary clinics to make confirmative diagnosis of parvovirus infection in dogs. Even, SNAP Parvo Tests are user friendly and have higher specificity that does not cross react and having significant sensitivity [10].

Rapid methods of diagnosis are only qualitative test that cannot differentiate the antigenic variants. It is required to do confirmative diagnosis of CPV as rapid as possible at molecular level to check the antigenic variants. DNA isolation is critical step in every molecular diagnostic test where quantity and quality is concerned. Conventional and kit methods are time consuming as well as tedious to do and required various chemical. Commercial Kit’s method are reliable and faster than the conventional method but yield of DNA is comparatively depend on individual kit, expiration period and supplied solution composition and its durability. However, commercial kits are better in isolation of DNA, they are costlier and usability is time bound. Boiling-Snap chilling method was first introduced by Decaro et al. (2005) [2] for CPV but not yet standardized step by step in protocol format. Earlier successful attempt was made for isolation of viral DNA from faecal samples of dog by using chelex resin and it found to be useful for molecular diagnosis making [9]. Considering this, study was undertaken to standardized Boiling-Snap chilling method and evaluates viral DNA extraction methods for fast, rapid and accurate diagnosis of CPV.

Corresponding Author:

Dhruv Desai
Ph.D. Research Fellow,
Department of Veterinary Microbiology, College of Veterinary Science and Animal husbandry, Navsari Agricultural University, Navsari, Gujarat, India
Materials and Methods
Three different methods, Phenol-Chloroform Isoamyl alcohol (PCI) extraction method, PureLink™ Viral RNA/DNA Mini Kit and Boiling-Snap chilling methods were evaluated for the viral DNA extraction, DNA purity, Time duration and diagnostic efficacy by CPV based polymerase chain reaction using extracted DNA. Positive samples of CPV that were stored and deposited to department of veterinary microbiology were used in study to determine the efficient method of viral DNA extraction from faecal samples of infected dog.

DNA isolation by Phenol Chloroform Isoamyl alcohol (PCI) method
It was carried out as per protocol described by Nandi and Kumar (2010) [8]. Briefly, the 200 µl of faecal sample was treated with SDS (10% W/V) and proteinase K (250 µg/ml) and kept on dry bath at 56 °C for 30 min. Then 200 µl PCI mixture was added and vortexed. The mixture was centrifuged at 10,000 rpm for 5 min. The upper aqueous layer was carefully aspirated and further Sodium acetate (10% of aspirate volume) was added. This was with 1ml of chilled ethanol and kept overnight at – 20 °C. Next day, tube was centrifuged at 12,000 rpm for 15 min and supernatant was discarded. The obtained pellet was suspended in 500 µl of 70% ethanol and after mixing, centrifuged again at 12,000 rpm for 2 min. The pellet was dried at 37°C for about 20-30 min then resuspended in nucleic acid free water till further use.

DNA isolation by DNA isolation PureLink™ Viral RNA/DNA Mini kit
It was done as per manufacturer’s instructions from PureLink™ DNA/RNA mini kit (Invitrogen). In this method, 200 µl faecal samples and 25 µl Proteinase K with 200 µl lysis Buffer was added in micro centrifuge tube and vortexed for 5 min. Tube was incubated at 56 °C for 15 minutes. Further 250 µl of 96–100% absolute ethanol was added to it and vortexed for 15 second and the lysate was kept for 5 minutes at room temperature. Manufacture’s supplied viral spin column in a collection tube was further used by adding the lysate and centrifuged at 6800 ×g for 1 minute and flow through was discarded. The spin column was washed with 500 µl Wash Buffer (WII) with ethanol. Then it was centrifuged at 6800 ×g for 1 minute repeated for twice. Then the spin column was centrifuged at maximum speed (11000 ×g) for 1 minute to give dry spin and removal of remaining any solution. Finally, DNA was eluted with 50 µl sterile nuclease free water (E3) by centrifuging the spin column at maximum speed for 1 minute.

DNA isolation by Boiling-Snap chilling method
It was proceed as per protocol of Decaro et al. (2005) [21] with modification. Time and temperature for boiling step was evaluated for different combination to get best result. Similarly, Dilution of samples, centrifugal force and snap chilling time were evaluated to get possible outcome.

DNA purity and concentration
The characteristics of DNA isolation procedure were checked by evaluating the purity and concentration of extracted DNA. The quantity of DNA was measured in spectrophotometer by recording the concentration and the ratio of 260/280 nm wavelength for single stranded DNA. Qualified samples only used for further experiment.

Time duration
The whole procedures of DNA isolation methods were noted with time duration requirement from faecal sample processing to DNA extraction. The average time taken in the above protocols was recorded to summarize the rapid method.

Polymerase Chain Reaction (PCR) to check diagnostic efficacy
PCR reaction was carried out with primer set used by Perriera et al. (2000) [8] where obtaining of 681 bp ampiclon by using forward primer (F) 5'-GAAGAGTGATTGAATAAATA-3' and reverse primer (R) 5'-CCTATATCAACGTTAGTAG-3' was considered as positive reaction. The reaction mix contain 12.5 µl master mix (Taq PCR master mix kit, Qiagen), one µl of each forward and reverse primer (10 pmol/ µl, working concentration of primers), 2 µl of DNA isolated by conventional and kit method whereas 4 µl DNA from Boiling-Snap Chilling method and remaining nuclease free water to make 25 µl. The initial denaturation on 95 °C for 7 min, denaturation, annealing and extension temperature/time combinations was 94 °C/30 sec, 48 °C/1 min and 72 °C/1 min for 35 cycles. Then final extension was carried out at 72 °C for 10 min. The gel electrophoresis was done by using 1.5% agarose, stained by ethidium bromide dye, DNA ladder as a marker and run at constant 80 V for 1 hour.

Results and Discussion
Boiling-Snap chilling method is standardized in department of veterinary microbiology. Systematically protocol is following. The heating and chilling plate first set on 95 °C. faecal samples were processed first by diluting in 1:5 with Phosphate buffer saline (PBS) and vortexed well for 2 min. Then after, a volume of 200 µl processed faecal sample in PBS/ Hank’s Balance salt solution (HBSS) was heated at 95°C for 5 minutes and snap chilled on ice for 5 min. Then the tube was centrifuged for 5 min at 2500 rpm. Supernatant was used as DNA template for molecular detection.

Results of evaluation of three methods for Viral DNA extraction, DNA purity, Time duration, average DNA concentration and PCR positivity by three methods were described in table 1, 2 and 3. Comparison in terms of duration is mention in table 4. PCR positivity comparison of samples depicted in figure 1.

<table>
<thead>
<tr>
<th>S. no</th>
<th>Attempt No</th>
<th>Time taken</th>
<th>Avg. DNA Conc. (ng/µl)</th>
<th>PCR Positivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>17 hours 50 min</td>
<td>40.77</td>
<td>3/3 samples</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>17 hours 20 min</td>
<td>28.53</td>
<td>3/3 samples</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>18 hours 30 min</td>
<td>55.51</td>
<td>3/3 samples</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>17 hours 10 min</td>
<td>47.61</td>
<td>3/3 samples</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>17 hours 35 min</td>
<td>48.26</td>
<td>3/3 samples</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>17 hours 55 min</td>
<td>45.23</td>
<td>3/3 samples</td>
</tr>
</tbody>
</table>
The impact of DNA.

In

dove canine parvovirus vaccine on the SNAP

t the highest

15; there is presence of faecal residues while performing the
interfere with the DNA polymerase enzyme.

inactivation of enzymes; even further
must require to boil the samples. Boiling will do the
amplifying in PCR.

as well as DNA polymerase enzyme, which might not allow
faeces.

during steps

pure DNA, but yield may be less or vary due to the loss
well as ratio because of purity. Kit method extra
method has relatively optimum level of DNA concentration as
faecal microbial DNA, protein and other interference. Kit
whereas DNA concentration and 260/280 ratio varied due to
DNA

from faecal samples, hence it isolate all faecal microbial
yield is high in PCI method
22 min 8 sec in commercial kit method and Boiling
method is time consuming, on an average it takes 17
hours 34 min to isolated DNA. Whereas, 67 min 28 sec and
22 min 8 sec in commercial kit method and Boiling-Snap
chilling method respectively. Average concentration of DNA
yield is high in PCI method [3] because of isolation of DNA
from faecal samples, hence it isolate all faecal microbial
DNA[3]. The same way in Boiling-Snap chilling method, whereas DNA concentration and 260/280 ratio varied due to
faecal microbial DNA, protein and other interference. Kit
method has relatively optimum level of DNA concentration as
well as ratio because of purity. Kit method extract highest
pure DNA, but yield may be less or vary due to the loss
during steps [4]. Boiling-Snap chilling method is very cost
effective and rapid. Faecal samples have various digestive
enzymes residues, bile salts, bile pigments and impurities of
faeces. Hence, enzymes might be interfering to the viral DNA
as well as DNA polymerase enzyme, which might not allow
amplifying in PCR. For the inactivation of the enzymes, it
must require to boil the samples. Boiling will do the
inactivation of enzymes; even further dilution will not
interfere with the DNA polymerase enzyme. Sometimes, if
there is presence of faecal residues while performing the
DNA isolation method, it may cause variation in result due to
interference. That’s why initial dilution must be required. In
conclusion, Boiling-Snap chilling method is best suitable
among all method for the CPV DNA isolation from the faecal
sample. It is very easy, rapid and cost effective method to do
molecular based confirmative diagnosis.

References
1. Decaro N, Buonavoglia C. Canine parvovirus – A review
of epidemiological and diagnostic aspects, with emphasis
2. Decaro N, Campolo M, Desario C, Elia G, Martella V,
Ricci D et al. Maternally-derived antibodies in pups and
protection from canine parvovirus infection. Biologicals.
3. Fiedorova K, Radvansky M, Nemcova E, Grombirikova
H, Bosak J, Cernochova M et al. The impact of DNA
extraction methods on stool bacterial and fungal
microbiota community recovery. Frontiers in
Evaluation of DNA Extraction Methods from Feces of
Multiple Host Species for Downstream Next-Generation
Comparison of six nucleic acid extraction methods for
detection of viral DNA or RNA sequences in four
different non-serum specimen types. Journal of Clinical
6. Nandi S, Kumar M. Canine Parvovirus: Current
7. Parrish CR, Aquadro CF, Carmichael LE. Canine host
range and a specific epitope map along with variant
sequences in the capsid protein gene of canine parvovirus
and related feline, mink, and raccoon parvoviruses.
8. Pereira CA, Monezi TA, Mehnert DU, D’Angelo M,
Durigon EL. Molecular characterization of canine
parvovirus in Brazil by polymerase chain reaction assay.
Veterinary Microbiology. 2000; 75(2):127-133.
9. Savi M, Prasad G. Rapid, sensitive and cost effective
method for isolation of viral DNA from feacal samples of
10. Schultz RD, Larson LJ, Lorentzen LP. Effects of
modified live canine parvovirus vaccine on the SNAP
ELISA antigen assay. Journal of Veterinary Emergency