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Abstract 
The increase in global temperature will directly affect the phenology of insects and other ectothermic 

organisms. Understanding how temperature will affect these organisms is necessary to make 

conservation decisions. Butterflies are indicated as biological models to assess abiotic pressures. This 

paper describes the influence of temperature on egg development of the Actinote brylla butterfly. Egg-

clusters were searched on seven sites in the study area. During immature rearing temperature was 

continuously monitored by an Arduino Uno-based datalogger with a digital temperature sensor 

programmed to record environmental temperature at each minute. Statistical analyzes were performed 

using R software packages. Mean accumulated degree-days during development of 92 recent eggs 

clusters collected during winter in six sites in the study area ranged from 362.5°C to 385.6°C in a mean 

temperature interval that ranged from 21.8°C to 22.3°C. The development of Actinote brylla eggs 

responded positively to temperature increase. Female egg-laying concentrated in the week from July, 7 to 

July, 13, responding to the increase of day length and the fall of mean temperature. 
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Introduction 

The latest report by the Intergovernmental Panel on Climate Change [1] points to an average 

increase of 1.5°C in the planet's temperature over the next 100 years. Therefore, it is necessary 

to know their impacts on organisms. Global warming changes development and the phenology 

of organisms and is becoming increasingly common [2-9]. Such changes can influence all 

organisms, affecting, for example, the laying of eggs in birds [10, 12] or accelerating the 

development of insects, such as butterflies [3]. 

There is an inverse relationship between the increase in temperature and the development of 

ectothermic organisms [12]. For example, the fruiting and flowering of plants and the 

development of insects are influenced by the accumulation of temperature, known as degree-

days or thermal tolerance for development [9, 13-22].  

Insects are ubiquitous organisms, with many generations per unit of time and, because they are 

ectothermic, they can provide information for understanding how climate change is affecting 

biological systems [23]. Insects also show rapid responses to environmental changes, especially 

regarding temperature [20, 24]. Phytophagous insects can also be affected in different ways by 

the changes undergone by their host plants [25]. Such changes can be diverse and eventually 

change the pattern of distribution and abundance [26-35].  

For some species, the increase in temperature can be considered beneficial [36] or be disastrous 

for monophagous species [19, 25, 37]. The metabolism of ectothermic animals is considerably 

complicated because various temperature ranges are thought to be associated with different 

systemic states [19, 25, 37-38]. 

To understand how climate change can affect individuals of different species, it is necessary to 

know how such changes can affect biological communities. It is necessary to carry out 

research with a higher level of detail in a specific taxon making it possible to generate 

hypotheses for possible impacts on other organisms [39]. Butterflies are indicated for such 

forecasting models due to the wide knowledge about the group in relation to the pressure of 

abiotic factors on their life history [40-43].  

In the Neotropical region, species richness in assemblages of the butterfly tribe Acraeini 

(Nymphalidae) are low in hotter and/or dryer areas and practically absent in Amazon 

watershed were its sister group, Heliconiini are highly diverse. High Acraeini richness was 

observed in subtropical or/and mountain areas where mean temperatures were lower [44-47]. 
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This work describes the dynamics of the egg cluster process 

and the development of eggs in populations of Actinote brylla 

sampled in sites in Southeastern Brazil where they are present 
[45-47] together with its larval food plant, Mikania lundiana [45-

46]. 

 

Materials and Methods 

Study area 

Egg-clusters were searched on seven sites in the study area 

(Table 1). They were chosen because they had enough larval 

food plants or because many A. brylla adults were observed 

there. 

Climate 

At geographical coordinates -23.94° and -46.35°, the mean 

annual temperature is 21.2°C and mean total annual rainfall is 

2,667 mm with more than 37% of the rains concentrated on 

summer [50]. According to Köppen's classification, the climate 

of study area is type Af [51, 52]. On 2019 the mean annual 

temperature was 24.1°C, being 2.9°C above the normal. 

Rainfall was 3301.2mm or 23.8% bigger than normal. On six 

months the rainfall was bigger than normal with February and 

May two times bigger. Daylength was calculated based on 

sunrise/sunset tables [53].  

 
Table 1: Sites where samples were done, all in the coast of Sao Paulo, Brazil (see [49] for more details) 

 

 
 

Weather data 

Averages of hourly solar radiation (J/m2/s), temperature at 

shade (°C), wind velocity (m/s) and direction (quadrant) were 

obtained in CETESB site [54]. Temperature at shade (°C) was 

measured using an Hikari HT-450 (precision = 0.1°C) 

infrared thermometer and solar radiation using a solarimeter 

Instrutherm MES-100 (precision = 10 W/m2). Rainfall data 

was obtained from Cemaden site [55]. 

 

Field protocol 

In all sites, a careful search was done on all accessible leaves 

of the larval food plants, up to four meters high, and all 

visible egg-clusters were collected.  

During 2018-2019, a total of 211 leaves with 236 egg clusters 

were collected including those of females recorded laying 

eggs. The winter and spring egg clusters of 2018 were used 

only to estimate the duration of stages after hatching and 

qualitative observation of these larvae. Comparisons between 

the number of eggs per egg cluster were made only between 

the fall and winter generations of TRAPU, JURUB and 

VRQUI sites of the 2019. 

In the winter generation of year 2019, 134 leaves containing 

140 egg clusters were collected. To estimate the dates of each 

found egg cluster, we subtracted 17 days from the date of 

collection using the median found for egg development of the 

12 collected egg laying females. We used these estimates to 

verify the weeks where there were most females laying eggs. 

 

Egg development and temperature monitoring 

Eggs were reared in laboratory with no temperature control 

receiving only indirect daylight. Temperature variation was 

continuously monitored by an Arduino Uno-based datalogger 

with a digital temperature sensor DS18B20 programmed to 

record environmental temperature at each minute. The 

average of daily 1,440 recorded temperatures was used in the 

analysis. Temperatures of egg clusters from collection to 

transport to the laboratory (for 3 hours) were also considered. 

 

Data analysis 

Normality of data was checked using shapiro-wilk test. 

Regression of averages of mean daily temperature and 

duration of egg-clusters of each site were analyzed using a 

Generalized Linear Model (GLM). Differences of 

accumulated degree-days between sites were estimated by a 

one-way anova. PCA analysis used package FactoMineR, v. 

2.3 [56, 57], factoextra, v. 1.0.7 [58] and ggplot2 [59]. All tests 

were done using R software packages [60].  

 

Results and Discussion 

Distribution and characteristics of larval food plant 

The larval food plant Mikania lundiana used by A. brylla is 

relatively common in isolated hills and at foothills of Serra do 

Mar to elevations near 500 m. on the coast. It grows as a vine 

and could reach to the canopy of high trees. It is particularly 

abundant near rocky shores (Figure 1 A) and in low elevation 

hills (Figure 1 B-C) in coastal area of Sao Paulo state, from 

Cardoso Island to Picinguaba, in the Rio de Janeiro board. 

Despite this, it grows mainly in soils where clay component is 

higher than the sand component which are common in hill 

slopes. The consequence is that is not common in "restinga" 

forests on the coastal plains due to their high sand content. 

The effect promoted by the impact of A. brylla larvae when 

larvae reach last instar, in plants which were colonized by this 

species, is strong. When almost all leaves are eaten at least six 
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months are necessary by leaf reposition (n = 9) and in some 

case the plant is killed. In areas where the number of available 

plants is small this implicates that after mating, female adult 

butterflies when emerging need to search plants in other sites. 

 

 
 

Fig 1: (A) Some aspects of the bushes of M. lundiana in the Porchat 

Island south rockyshore (PORCH) on October 14, 2019. (B) TRAPU 

December 2, 2018. (C) NCINT August 11, 2019 

 

Leaf characteristics and microclimate environment 

Leaves of M. lundiana can present different leaf morphology 

in the same individual. Depending if the leaf is in a sunnier or 

shadier spot which determines the microclimates' moisture. 

Spots not exposed to direct sun have bigger old leaves than 

plants in sunny areas (n = 6). The complexity of the 

arrangement of the leaves means that there are sunnier and 

darker spots on the same plant. During the day, with the 

variation of the height of the sun, each leaf receives different 

amounts of solar radiation and all those exposed directly to 

the sun have higher temperatures. The surface temperature of 

a leaf partially exposed to the sun may be lower at the point 

where it is shaded (Figure 2 A-D). Variation in leaf shape in 

the same individual plant due to different environmental 

conditions, as in a sun and shade spot, is known in several 

angiosperms' species [60]. Other Mikania species, used as 

larval food plant also present variation in leaf shape (e.g. M. 

lanuginosa, M. scabrida, M. micrantha, and M. cordifolia). 

 

 
 

Fig 2: Differences on direct solar radiation reaching the leaf surface. 

Red arrow indicates sun incidence in relation to leaf surface and blue 

arrow a shaded leaf. All pictures from LIXAO on August 30 between 

09:50 and 10:00h when solar radiation ranged from 650 to 700 

W/m2. (A) Leaves at shade and (B) exposed to direct solar radiation. 

Recorded surface temperature on leaf (C) showed a difference of 

2.3°C between point a, b, and c. (D) Group of leaves totally exposed 

to direct solar radiation with leaf indicated by blue arrow partially 

shaded by other above it 

Leaf area from VRQUI, LIXAO and PORCH ranged from 

1696.5 mm2 to 9000.0 mm2 (n = 90) and were significant 

different (F2,87 = 74.62; p < 0.0001). Tukey multiple 

comparisons of means showed significant differences between 

VRQUI and LIXAO (p < 0.0001) and VRQUI and PORCH 

(p < 0.0001) (Figure 3 A).  

A total of 40 leaves measured at field on August 30, have 

significant differences in the surface temperature between the 

sun and shade leaves (F5,33 = 25.19; p < 0.0001; Figure 3 B). 

 

 
 

Fig 3: (A) Variation of leaf area (mm) in three sites in the study area 

showing the significant differences between leaves from VRQUI to 

leaves from LIXAO and PORCH. (B) Differences on the surface leaf 

temperature on August 30, between 09:50 and 11:10h. In LIXAO, 

JURUB, and VRQUI (n = 40) when solar radiation ranged from 650 

to 700 W/m2. Difference between means are significant (F5, 33 = 

25.19; p < 0.0001) 

 

Laboratory leaf heating experiments 

Leaves heated in controlled laboratory environment showed 

an increase of 10.54°C (SD = 0.86°C; n = 5; Figure 4) after 

10 minutes of exposition to an incandescent lamp which emits 

800 W/m2 of radiation at working distance. Therefore, actual 

degree-minutes accumulation in leaves in shade and in sun are 

significant different because exposed leaves accumulate more 

relative heat than those in shade. Since egg-clusters are 

immobile, those that are placed by the females in leaves in the 

sun should develop faster. 

On the other hand, as the larvae can move their 

thermoregulation is done behaviorally. 

 

 
 

Fig 4: Temperature increase of five leaves and two foam surfaces, 

one black and other white (see methodology) exposed during 10 

minutes to an incandescent lamp which emits 800 W/m2 at working 

distance. Data transformed (Log10) to fit a linear distribution. Initial 

temperature (red point) was 26°C. Black surface had an increase of 

16.3°C, and white surface of 11.9°C. Leaves had an average increase 

of 9.5°C (n = 5) 
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Temporal dynamics of egg laying by females 

During the period of June 17 (Autumn) July 22 (Winter), the 

estimates of dates of female ovipositions' showed that 71.3% 

egg clusters were laid were from 6 to 18 July; Figure 5 A). 

The Principal Component Analysis of environmental 

conditions for the period of 36 days when ovipositions 

occurred (Figure 5 B) showed that the first two dimensions of 

analyses expressed 55.34% of the total dataset's inertia which 

is high enough representing both first planes of data 

variability. The cluster in the top right quadrant grouped 

mostly days when egg laying was high and has a positive 

significant correlation with the photoperiod (PHOTO) and a 

strong negative correlation with mean temperature (TMED). 

At the end of autumn and beginning of winter, the decrease in 

the photoperiod (daylength) is expected and the average 

temperature should decrease. However, what happened is that 

it remained high (above 25°C), dropping only in the week of 

July 7-13 when egg laying was high. Most of egg-clusters 

were laid when daylength ranged 644 to 647 minutes and 

mean temperature from 14.6°C to 18.6°C. 

 

 
 

Fig 5: (A) Number of egg clusters from June 17 (Autumn) to July 22 (Winter) in three sites of the study area. Numbers after site name are the 

total egg clusters and inside parenthesis, total number of eggs. Egg laying was concentrated in the period from July 6 to 18 (gray shaded area). 

(B) Principal Component Analysis of environmental conditions during the period of winter ovipositions in 2019 in the study area, from June 17 

to July 22. The gray area indicates the days when the higher egg laying number occurred. This cluster has a positive significant correlation with 

the photoperiod (PHOTO) and a strong negative correlation with mean temperature (TMED). Vector color indicates the variable contribution of 

the variable according with the color scale at right. Mean wind velocity (WMED), rainfall (TRAIN), minimum and maximum integrated solar 

radiation (RMIN and RMAX) were variables that had low contribution to variance 

 

Result of the General Additive Model analysis of total 

number of egg clusters (TOTAL) shows the significant 

additive role of photoperiod (PHOTO) and mean temperature 

(TMED) (Table 2). The egg clusters in VRQUI (n = 71) were 

distributed in eight M. lundiana patches (mean = 8.9 egg 

clusters/patch); in JURUB (n = 52) in five patches (10.4 egg 

clusters/patch) and NCINT (n = 26) in one patch of the larval 

foodplant. 
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Table 2: Results of the General Additive Model analysis of total number of egg clusters (TOTAL) as a function of the photoperiod (PHOTO) 

and mean temperature (TMED). Significance codes: 0 (***); 0.001(**); 0.01(*) 
 

 
 

Number of eggs in clusters 

The average number of eggs in clusters of A. brylla follow the 

same pattern of other neotropical Actinote species whose life-

cycle is known (Table 3) and Acraeini species from 

Afrotropical region [69-71].  

Three virgin females that were dissected emerged with an 

average of 354 ± ovules ready to be fertilized and an 

additional 637 ± 42 ovules to develop, the same pattern 

observed for A. pellenea pellenea [46]. So, if a female can 

potentially lay an average of three eggs clusters along its brief 

life of few days, we can infer that female number in these 

three sites in the winter of 2019 was 17, 9 and 24, 

respectively. These numbers are not very different from the 

number of females that were observed in the field during the 

study period. The number of eggs per egg cluster and egg 

density per egg cluster between the three study sites was not 

significant when analyzed by one-way anova. 

 
Table 3: Number of eggs in egg-cluster of some Actinote species 

 

 
 

Temperature and egg development 

A total of 92 egg-clusters from 2019 winter generation were 

reared from June 28, 2019 to August 7. During this period, the 

average laboratory temperatures ranged from 20.4°C to 

23.7°C (mean = 21.6°C; Fig. 6 LABOR) and environmental 

temperature recorded by CETESB automatic station for the 

same period ranged from 14.6°C to 26.4°C (mean = 20.3°C; 

Fig. 6 CETESB). The difference between laboratory 

temperatures and environmental temperatures ranged from -

4.4°C to +8.0°C being significant different (Wilcoxon rank 

sum test with continuity correction w = 1,137.5; p = 0.006).  
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Fig 6: (A) Variation of daily mean temperature in the laboratory (LABOR) and in Santos environmental automatic station (CETESB) showing 

the difference between medians (Wilcoxon rank sum test with continuity correction w = 1137.5; p = 0.006) 

 

Mean accumulated degree-days during development of 92 

recent eggs clusters collected during winter in six sites in the 

study area ranged from 362.5°C to 385.6°C in in a mean 

temperature interval that ranged from 21.8°C to 22.3°C (Fig. 

7 A). Mean duration of egg stage ranged from 15.6 to 16.3 

days (absolute values ranged from 14 to 19 days), diminishing 

with the increase of mean temperature (Fig. 7 B) but egg 

duration between these sites were no significant (Fig. 8 A). 

Extrapolating the regression equation: duration (days) = -

1.3571 * x°C + 45.824 we can predict egg mean durations of 

12, 9, 8, 6, and 5 days at mean temperatures of 25, 27, 28, 29, 

and 30°C, respectively. This will be checked in a next step of 

this project. 

 

 
 

Fig 7: (A) Accumulated degree-day (°C) of egg-clusters of Actinote brylla in six different sites in the study area in function of development 

duration (days) (Adjusted R-squared = 0.83; F1,4 = 25.99; p = 0.007). (B) Mean egg duration (days) in function of mean temperature (°C) of egg-

clusters of Actinote brylla collected in six different sites in the study area showing the decrease of egg stage duration with the temperature 

increase. Numbers inside parenthesis indicate the number of sampled egg-clusters) (Adjusted R-squared = 0.85; F1,4 = 29.07; p = 0.006). Gray 

area indicates the 95 % confidence interval. Gray area indicates the 95 % confidence interval 

 

Egg eclosion 

The duration of eclosion of eggs of 11 egg-clusters ranged 

from 30 to 210 minutes (Fig. 8 B). The regression analysis 

between both variables showed no significant correlation 

between egg number in the cluster and total time spent for 

eclosion (Fig. 8 C). This analysis ignored non-fecundated 

eggs, ovules, which keep the original yellow color while the 

others become reddish over time. 
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Fig 8: (A) Mean accumulated degree-days of egg-cluster of Actinote brylla collected in six sites of the study area. There were no significant 

differences between them (F = 2.281; df = 5; p > 0.05). (B) Duration (minutes) of egg eclosion in 11 egg-clusters of Actinote brylla. (C) There is 

no significant correlation between the number of eggs in the egg-clusters and the total time necessary for the eclosion of all eggs 

 

The published records of egg duration for other 18 

Neotropical montane Acraeini species shows values ranging 

from 12 to 24 days (Table 2). However, they do not have 

information for the temperature range during egg 

development of these species. 

Our methodology maintaining the egg-clusters at 

environmental laboratory conditions (temperature and 

daylength) was effective since that quantity of egg-clusters 

was enough to work with averages. We need to consider that 

also the genetical information in the sampled eggs of each site 

could be relevant in development response to temperature. 

Even so, for a next job, we intend to use the degree-hour as a 

metric to reduce any errors. 

Being mainly subtropical, assemblages of Actinote species are 

richer in mountainous areas (above 1,000 m in our latitudes 
[48]) or more southern areas in Brazil (Paraná, Santa Catarina 

and Rio Grande do Sul) and living in climates where mean 

annual temperatures are under 20°C [55]. Therefore, optimal 

developmental temperature should be around this value. 

 

Conclusion 

Our data show that the development of Actinote brylla eggs 

reared in laboratory environment responded positively to 

temperature increase. Daylength and mean daily temperature 

had a role in the female egg laying pattern. 
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