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 A review on antimicrobial resistance, diagnosis 

and an alternative approach 
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Yogeshpriya and N Premalatha 

 
Abstract 
Antibiotics are extensively used as therapeutic agents for the treatment of infectious diseases in humans 

and livestock. Penicillins, tetracyclines, sulphonamides, fluoroquinolones and cephalosporins are major 

antibiotic classes widely used in animal production. Antibiotic usage was highest in swine, chicken and 

cattle and extremely low in sheep. The use of antibiotics in extra-label use may pose a strong pressure on 

human, animal and soil microbiome leads to the emergence of antibiotic resistance and have a serious 

impact on human and animal health. The antimicrobial alternatives such as phage therapy, prebiotics, 

probiotics, metals and minerals, organic acids and essential oils may be used to treat the infections and 

increase immune response. Globally, antimicrobial resistance crisis may be controlled by the 

implementation of monitoring and surveillance programme for clinically important antimicrobial classes 

used in animals and human and assessment of antimicrobial resistant genes in animal products and 

environment, reduced use of antibiotics in animals by enhancing host resistance and decreased exposure 

to the infectious agent through hand sanitation. 

 

Keywords: Antibiotics, AMR, ARG, antibiotic alternatives, growth promoters, PCR 

 

Introduction 

Antibiotics are antimicrobial substance destroy or slow down the growth of the bacteria. These 

are natural, semi-synthetic or synthetic origin [1], widely used in livestock for the treatment of 

respiratory, enteric infections, mastitis, metritis and prophylactic mass treatment to control 

infection and as growth promoters to improve feed efficiency [2]. Several antibiotic classes are 

extensively administered to food-producing animals viz., tetracyclines, sulfonamides, 

fluoroquinolones, macrolides, lincosamides, aminoglycosides, beta-lactams, cephalosporins 

etc. [3]. Nowadays most of antibiotics are lost their curative purpose due to the emergence of 

antibiotic resistance [4]. Continuous antibiotic usage urges the sensitive bacteria to become 

resistant for survival, the resistant pathogens can be transferred indirectly to the human 

through the environment. The emergence of antimicrobial resistant pathogenic bacteria [5] 

poses a serious impact on public health worldwide [6]. Most of the antibiotics/antibacterial 

agents were used today are derived from soil bacteria genus Streptomyces [7]. Antibiotics 

producing soil bacteria contain a variety of self defence against their own antibiotics, and the 

genetic determinant for self-defence was always co-regulated with antibiotic biosynthetic 

genes [6, 8]. The increase in antimicrobial resistance has been reported in both commensal and 

pathogenic bacteria [9], which leads to poor clinical recovery in animals and humans [10]. The 

understanding of antibiotic usage pattern, the resistant mechanism in bacteria and its impact on 

human and animal health are essential to trace the alternatives to mitigate antimicrobial 

resistance.  

 

Antibiotics use in food animals 

Antibiotics are widely used in animals to maintain health and productivity as well as to meet 

the increased demand for animal protein for human consumption. The estimated global 

antibiotics consumption in food producing animals was 63151 tons in 2010, of which five 

countries shared more than 50% of consumption by China (23%), United States (13%), Brazil 

(9%), India (3%) and Germany (3%) [11]. China has become the largest producer and consumer 

of antibiotics and nearly half of the produced (210,000 tonnes) were utilized for food animals 
[12], a high volume of sulphonamides, tetracyclines and fluoroquinolones (enrofloxacin, 

fleroxacin and norfloxacin) were widely used in agricultural sectors in China [13].  
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The United States utilizing more antibiotics (9702 tonnes) for 

livestock than the United Kingdom of a European country 

(404 tonnes) [14]. In livestock, antimicrobial usage was 

maximum in swine followed by chicken and cattle for the 

production of meat and very low in sheep [15-16]. The world 

average annual consumption of antimicrobials for the 

production of one kilogram of beef, chicken and pork was 45, 

148 and 172 mg, respectively [11]. India holding the largest 

livestock population in the world, accounting for 11.6% and 

stands fifth place in meat production. Chicken is most 

commonly consumed meat than others, antibiotics such as 

tetracycline, doxycycline and ciprofloxacin are commonly 

used as a growth promoters in poultry production at a sub-

therapeutic doses in India [17].  

 

Growth promoters 

The antibiotics used as growth promoting agents to accelerate 

feed efficiency in the poultry and pigs over 60 years. Drugs 

such as penicillin, oxytetracycline, bacitracin, aureomycin and 

streptomycin were among the earliest antibiotics reported to 

yield a growth impact on young birds at sub-optimal dose in 

feed at 1-20 ppm [18]. It is more frequently used for non-

therapeutic than therapeutic applications, developed countries 

utilizing 50-80% of antibiotics produced [19]. There are 12 

classes of antimicrobials and they are arsenicals, 

polypeptides, glycolipids, tetracyclines, elfamycins, 

macrolides, lincosamides, polyethers, beta-lactams, 

quinoxalines, streptogramins and sulphonamides used at 

different times in the life cycle of poultry, cattle and swine to 

increase production [20], repeatedly exposing these animals to 

small doses of antibiotics significantly contributes 

antimicrobial resistance [21]. Currently, many antibiotics used 

in food animals are the same as or surrogates of antibiotics 

used in human medicine [22]. Antibiotics are essential for the 

treatment of many common human and animal pathogenic 

bacterial infections and other major surgical procedures [23]. 

The World Health Organization (WHO) and World 

Organisation for Animal Health (http://www.oie.int/) 

developed a comprehensive list as “critically important”, 

“highly important” and “important” based on importance in 

human and veterinary medicine to balance the animal health 

and public health [24] (Table 1). The new rules eliminate the 

use of medically important antibiotics for growth promotion 

and permit only the use of these drugs for therapeutic or 

preventive purposes under the supervision of a Veterinarian 
[25].  

 

Table 1: Classification of veterinary important antimicrobials for food producing animals [24] 

 

 
Antimicrobial 

family 
Name of the antibiotics 

Veterinary Antimicrobials 
Specific 

recommendations 
Clinically 

important 

Highly 

important 
Important 

I. Penicillins 

a Natural Penicillin 

Benethamine penicillin, Benzyl 

penicillin, Penethamate 

(hydroiodide), Penicillin procaine, 

Benzathine penicillin 

  

 
- - 

Treatment of 

Septicemia, 

respiratory and urinary 

tract infections 

 

b Amdinopenicillin Mecillinam 

c Aminopenicillins 
Amoxicillin, Ampicillin, 

Hetacillin 

d 

Aminopenicillin and 

Beta lactamase 

inhibitor 

Amoxicillin and Clavulanic acid 

e Carboxy Penicillin Ticarcillin, Tobicillin, 

f Ureidopenicillin Aspoxicillin 

g Phenoxypenicillins 
Phenoxymethylpenicillin, 

Phenethecillin 

h 
Anti-staphylococcal 

Penicillin 

Cloxacillin , Dicloxacillin, 

Naficillin, Oxacillin 

II. Cephlosporins 

a 
First generation 

Cephalosporins 

Cefacetrile, Cefalexin, Cefalotin, 

Cefapyrin Cefazolin Cefalonium 

  - - 

Treatment of 

septicemias, respiratory 

Infections and mastitis 

 

b 
Second generation 

Cephalosporins 
Cefuroxime 

c 
Third generation 

Cephalosporins 

Cefoperazone, Ceftiofur 

Ceftriaxone 

d 
Fourth generation 

Cephalosporins 
Cefquinome 

III. Aminoglycosides 

e Aminocyclitol 

Spectinomycin 

Streptomycin, 

Dihydrostreptomycin 

  - - 

Septicaemias, digestive, 

respiratory and urinary 

diseases. 

Gentamicin is indicated 

for Pseudomonas 

aeruginosa infections. 

Apramycin and 

Fortimycin are 

currently used in 

animals alone 
 

f 

Aminoglycosides + 2 

Deoxystreptamine 

 

 

Kanamycin, Neomycin, 

Framycetin, Paromomycin, 

Apramycin, Gentamicin, 

Tobramycin , Amikacin 

IV. 
Ansamycin-

Rifamycins 
Rifampicin, Rifaximin -   - 

Mastitis and 

Rhodococcus equi 
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infections in foals 

V. Bicyclomycin Bicozamycin - -   

Digestive and 

respiratory 

diseases of cattle and 

septicaemias in fish 

VI. Phosphonic acid Fosfomycin -   - 

This antimicrobial is 

authorised only in a few 

countries and critically 

importance for fish 

 VII. Tetracycline 

a Tetracyclines 
Cholrtetracycline, Doxycycline, 

Oxytetracycline, Tetracycline 
  - - 

Treatment of many 

bacterial and 

chlamydial 

diseases in animals and 

birds. There are no 

alternatives to 

tetracyclines in the 

treatment of animals 

against heartwater 

(Ehrlichia 

ruminantium) 

and anaplasmosis 

(Anaplasma marginale) 

 VIII. Sulfonamides 

b Sulfonamides 

Sulfachlorpyridazine, 

Sulfadiazine, Sulfadimerazine, 

Sulfadimethoxine Sulfadimidine, 

Sulfadoxine, Sulfafurazole, 

Sulfaguanidine, Sulfamethazine, 

Sulfadimethoxazole, 

Sulfamethoxine, 

Sulfamonomethoxine, 

Sulfanilamide, Sulfaquinoxaline 

   - 

Several sulfonamides 

alone or in combination 

with 

diaminopyramidines are 

very essential to treat 

bacterial, coccidial and 

protozoal infections 

 
c 

Sulfonamides + 

Diaminopyrimidines 

Sulfamethoxypyridazine, 

Trimethoprim+Sulfonamide, 

Ormetoprim+Sulfadimethoxine 

d Diaminopyrimidines Baquiloprim, Trimethoprim 

IX. Streptogramins Virginamycin  -   

For prevention of 

necrotic enteritis 

(Clostridium 

perfringens) in poultry 

 X. Quinolones 

a 
First Generation 

Quinolones 

Flumequin, Miloxacin, Nalidixic 

acid, Oxolinic acid 

  - - 

Septicemias, chronic 

respiratory disease in 

poultry (E.coli 

colibacillosis in poultry, 

cattle, swine, fish and 

other species 

 

b 

Second Generation 

Quinolones 

(Fluoroquinolones) 

Ciprofloxacin, Danofloxacin, 

Difloxacin, Enrofloxacin, 

Marbofloxacin, Norfloxacin, 

Ofloxacin, Orbifloxacin, 

Sarafloxacin 

XI. Quinoxalines Carbadox, Olaquindox - -   

Digestive disease of 

pigs (e.g. swine 

dysentery) 

XII. Amphenicols Florphenicol, Thiamphenicol   - - 

It is a useful alternative 

for respiratory 

infections in cattle, 

swine and poultry and 

some fish diseases. 

Florfenicol, are 

used to treat 

pasteurellosis in cattle 

and pigs 

XIII. Plueuromutilins Tiamulin, Valnemulin -   - 

Respiratory infections 

in pigs and poultry, 

swine dysentery 

(Brachyspira 

hyodysenteriae) 

XIV. Lincosamides Pirlimycin, Lincomycin -   - 

Mycoplasmal 

pneumonia, infectious 

arthritis and 

hemorrhagic enteritis of 

pigs 

http://www.entomoljournal.com/
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 XV. Macrolides 

a Macrolides C14 
Erythromycin, Oleandomycin 

 

  - - 

Mycoplasma 

infections in pig and 

poultry, hemorraghic 

digestive disease in 

pigs, respiratory 

infections and liver 

abscesses 

(Fusobacterium 

necrophorum) in the 

cattle 

b Macrolides C15 
 

Gamithromycin, Tulathromycin 

c Macrolides C16 

Carbomycin, Josamycin, 

Kitasamycin, Spiramycin, 

Tilmicosin, Tylosin, 

Mirosamycin, Terdecamycin, 

Tildipirosin, Tylvalosin 

d Macrolides C17 Sedecamycin 

XVI. Orthosomycins Avilamycin - -   

Digestive diseases of 

poultry and rabbits and 

necrotic enteritis in 

chickens 

XVII. 
Aminocoumarin 

 
 

Novobiocin - -   

Novobiocin is used in 

the treatment of mastitis 

in the form of 

intramammary creams 

and sepsis in fish 

 XVIII. Polypeptides 

a Polypeptides 
Enramycin, Gramicidin, 

Bacitracin 

-   - 

Bacitracin is used 

against necrotic 

enteritis in poultry. 

Polypeptides 

are indicated in 

septicaemias, 

colibacillosis, 

salmonellosis and 

urinary infections 

b Polypeptides Cyclic Colistin, Polymixin 

XIX. Fusidic acid Fusidic acid - -   
Ophtalmic diseases in 

cattle and horses 

XX. Ionophores 

Lasalocid, Maduramycin, 

Monensin, Narasin, Salinomycin, 

Semduramicin 

- -   

Intestinal coccidiosis 

(Eimeria spp). 

This class currently 

used in animals alone 

 
 

XXI. Arsenical 
Roxarsone, Nitarsone 

  
 

- -   
Intestinal coccidiosis in 

avian and swine 

XXII. Thiostrepton Nosiheptide - -   

Treatment of 

dermatological 

conditions in swine and 

avian 

Source: OIE, 2018 [24] 

 

Prophylactic and metaphylactic use 

Antibiotics are prophylactically used when dairy herds or 

flocks are exposed to infectious pathogens considered to be at 

risk. In poultry and livestock, mass administration of 

antibiotics is often practiced when transporting or moving 

young animals to prevent respiratory and intestinal illness, 

when animals have been subjected to stressful or 

unfavourable environmental conditions. In United States, 16% 

of lactating dairy cows were treated for clinical mastitis [26]. 

Penicillin, cephalosporins or other beta-lactam drugs are 

prophylactically used as intra-mammary infusions in all dairy 

cows following each lactation to prevent and control future 

mastitis [27]. Metaphylactically healthy beef calves are 

administered with a therapeutic dose of antibiotics to mitigate 

anticipated outbreaks of respiratory disease and for prevention 

of liver abscess in beef calves with tylosin[26, 28,29]. 

Pigs in intensive, indoor systems often receive antibiotic 

treatment at each stage of their lives until slaughter, usually at 

less than 6 months old. Suckling and nursery pigs are 

commonly affected with a gastrointestinal infection such as 

post weaning diarrhoea due to Escherichia coli, salmonellosis 

and respiratory diseases [30]. In Thailand, the largest 

proportion of medicated feed was applied to suckling and 

nursery pigs (39.7%) and fatteners (37.3%), the drugs like 

lincomycin, tiamulin and tylosin are commonly used in 

fatteners to prevent diseases [31]. In Belgium, 93% of pigs 

were treated prophylactically and 7% metaprophylactic. The 

most frequently used oral antimicrobials in pig herds are 

colistin (30.7%), amoxicillin (30.0%), trimethoprim-

sulfonamides (13.1%), doxycycline (9.9%) and tylosin 

(8.1%). Injectable antimicrobials such as tulathromycin 

(45.0%), long acting ceftiofur (40.1%) and amoxicillin (8.4%) 
[32]. 

 

Evolution of antimicrobial resistance 

Ever since there has been the discovery of antibiotics and 

alongside the development of resistance to new antibiotics are 

takes place. In fact, germs will always look for ways to 

survive and resist new drugs [33] (Table 2). 
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Table 2: Development of antimicrobial resistance to various antibiotics 
 

Antibiotics 
Year of introduction 

for therapy 
Antimicrobial resistance gene identified bacteria 

Antimicrobial 

resistance 

identified year 

Penicillin 1941 

Staphylococcus aureus 1942 

Streptococcus pneumonia 1967 

Pencillinase producing Neisseria gonorrhoea 1976 

Vancomycin 1958 

Plasmid mediated vancomycin-resistant Enterococcus 

faecium 
1988 

Vancomycin-resistant Staphylococcus aureus 2002 

Methicillin 1960 Methicillin resistant Staphylococcus aureus 1960 

Extended spectrum 

cephlosporins (Cefotaxime) 
1980 Extended spectrum β-lactamase producing Escherichia coli 1983 

Azithromycin 1980 Neisseria gonorrhoea 1983 

Imipenem 1985 Carbapenemase producing Klebsiella pneumonia (KPC) 1996 

Ciprofloxacin 1987 Neisseria gonorrhoea 2007 

Daptomycin 2003 Staphylococcus aureus 2004 

Ceftazidime-Avibactam 2015 Carbapenemase producing Klebsiella pneumonia (KPC) 2015 

Source: cdc.gov/drugresistance/about.html) [33] 

 

Antimicrobial resistance mechanism 

Bacteria may be intrinsically resistant to more than one class 

of antibacterial agents or may acquire resistance by a 

spontaneous mutation in housekeeping structural or regulatory 

genes of the bacterial chromosome or via the acquisition of 

resistance genes from other organisms [34]. Acquisition of new 

genetic material by antimicrobial susceptible bacteria from 

resistant strains of bacteria may occur through horizontal gene 

transfer (HGT) mechanisms includes transformation, 

conjugation and transduction with transposons-mobile genetic 

elements found in plasmids, which helps to facilitate the 

incorporation of multiple resistance genes into the host 

genome or plasmids [35]. The majority of commensal 

bacteria’s are harmless but, it acquires antibiotic resistance 

gene by HGT and transfer resistance genes to pathogenic 

bacteria [34], acquired resistance genes may enable a bacterium 

to produce enzymes that destroy the antibacterial drug, to 

express efflux systems, alteration of target site that prevents 

the drug binding to exert antimicrobial action or to produce an 

alternative metabolic pathway that bypasses the action of the 

drug [36] (Table 3). 

 

Table 3: Mode of action and resistant mechanism for commonly used antibiotics 
 

Antibiotic class Examples Mode of action Mode of development of resistance 

Β-Lactams 

Pencillin, Cephalosporin, Penems 

(Meropenem), Monobactams 

(Aztreonam) 

Inhibit cell wall synthesis Hydrolysis, efflux, altered target site 

Sulfonamides Sulfamethoxazole, Sulphaquinoxaline Inhibit folic acid metabolism efflux, altered target 

Aminoglycosides 
Gentamicin, Kanamycin, Amikacin, 

Streptomycin Spectinomycin 
Inhibit Protein synthesis 

Phosphorylation , acetylation, 

nucleotidylation, efflux, altered target 

Tetracycline 
Oxytetracycline, Minocycline, 

Doxycyline 
Inhibit protein synthesis Monooxygenation, efflux, altered target 

Macrolides Erythromycin Azithromycin Inhibit protein synthesis 
Hydrolysis, glycosylation, 

phosphorylation, efflux, altered target site 

Lincosomides Clindamycin Inhibit protein synthesis Nucleotidylation, efflux, altered target 

Oxazolidinones Linezolid Inhibit protein synthesis Efflux, altered target 

Glycopeptides Vancomycin, Teichoplanin Inhibit cell wall synthesis 
Reprogramming peptidoglycan 

biosynthesis 

Quinolones Ciprofloxacin, Enrofloxacin Pefloxacin Inhibit DNA replication Acetylation, efflux, altered target 

Streptogramins Synercid Inhibit protein synthesis 

C-O lyase (type B streptogramins), 

acetylation (type A streptogramins), 

efflux, altered target 

Lipopeptides Daptomycin Act on cell membrane Altered target 

Rifamycins Rifampin Inhibit transcription ADP-Ribosylation, efflux, altered target 

Phenicols Chloamphenicol Inhibit protein synthesis efflux, altered target 

Pyrimidines Trimethoprim 
Interfere with folate 

metabolism 
efflux, altered target 

Cationic peptides Colistin Act on Cell membrane efflux, altered target 

Source: Davis and Davis, 2010 [36] 

 

Enteric pathogens E. coli and Klebsiella pneumonia have 
evolved resistance to the most recent generation β-lactam 
antibiotics by acquiring plasmids carrying extended-spectrum 
β-lactamases and carbapenemases [34]. Enterococci are 
intrinsically resistant to cephalosporins and penicillin due to 
the expression of low-affinity penicillin binding proteins 
(PBPs) that bind weakly to beta-lactam antibiotics [37]. 

Saphylococcus aureus is resistant to several antibiotics 
starting with Penicillin to the most recent antibiotics linezolid 
and daptomycin. Resistance mechanisms involve the 
production of inactivating enzyme penicillinase and 
aminoglycoside-modification enzymes (Penicillin and 
aminoglycosides), alteration of target binding site, trapping of 
antibiotics and upregulating of efflux pumps, which extrude 
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drug from the cell (Fluoroquinolones and tetracycline) and for 
linezolid and dapomycin through spontaneous mutation [38]. 
Strains of Pseudomonas aeruginosa are known to utilize their 
high levels of intrinsic and acquired resistance mechanisms to 
most of the antibiotics. In addition, adaptive antibiotic 
resistance of P. aeruginosa is a recently characterized 
mechanism, which includes biofilm mediated resistance and 
formation of multidrug-tolerant persister cells, and is 
responsible for recalcitrance and relapse of infections [39]. A 
biofilm is an aggregate of microorganisms that adhere to each 
other on a living or non-living surface, and are embedded 
within a self produced matrix of extracellular polymeric 
substances (EPSs), including exopolysaccharides, proteins, 
metabolites and extracellular DNA (eDNA) [40-41]. The 
microbial cells grown in biofilms are less sensitive to 
antimicrobial agents and host immune response than the cells 
grown in free aqueous suspension [42]. This bacterial 
tolerance/persistence is responsible for the chronicity of 
disease [43]. Moreover, biofilm formation can also be harmful 
to host tissues since they can promote the phagocyte release 
of lysosomal enzymes, reactive oxygen and nitrogen species 
[44]. Administration of the third generation cephalosporin 
ceftiofur in dairy cows increased β-lactam and multidrug 
resistance genes in faeces [45-46]. Proteus mirabilis is a 
common cause of urinary tract infections (UTI). Emergence 
and spread of multidrug resistant P. mirabilis isolate, 
including those producing ESBLs, AmpC cephalosporinases 
and carbapenemases are more frequently reported and showed 
resistance to β-Lactams, aminoglycosides, fluoroquinolones, 
ceftazidime, cefotaxime, aztreonam and nitrofurans [47].  

 

Antimicrobial resistant (AMR) bacteria in animal 

products 
Any antimicrobial use, whether in humans, animals, plants or 
food processing technology, could lead to bacterial resistance 
[48]. The spread of AMR bacteria (AMRB) between animals 
and humans via the food chain and the exchange of AMR 
genes requires holistic approaches for risk mitigation [49]. The 
emergence of livestock-associated (LA) methicillin-resistant 
Staphylococcus aureus (MRSA) among and within livestock 
species is a relevant issue from both human and animal health 
perspectives [50]. The presence of MRSA in bovine milk and 
dairy environments poses a potential risk to farmworkers and 
veterinarians [51-52]. Limited data are available about the 
prevalence and genetic spread of MRSA in dairy 
environments in the United States. The low occurrence of 
MRSA (0-0.6%) among S. aureus isolates from bovine milk 
were reported. The herd prevalence of MRSA was 4% in 
Minnesota dairy farms and displayed resistance to β-lactams, 
cephalosporins, and lincosamides [53].  
Mahami et al. [54] reported that the E. coli was the most 
common isolate in pasteurized and unpasteurized milk, 
Staphylococcus epidermidis in powdered milk, E. coli and 
Enterococcus faecalis in imported pasteurized skimmed milk, 
Klebsiella sp in soya milk and all isolates showed 100% 
multi-drug resistant (MDR) to ampicillin, tetracycline, 
chloramphenicol, gentamycin, cotrimoxazole, cefuroxime and 
cefotaxime in Accra, Ghana. The MDR E. coli 
(52.5%), Proteus spp (77.7%) and S. aureus (40%) were 
isolated in both buffalo and chicken raw meats in Nepal. 
Chicken meat isolates had higher antimicrobial resistance 
rates in comparison to buffalo meat isolates, particularly 
amoxicillin, tetracycline, cotrimoxazole and nalidixic acid. 
[55]. The ESBL producing of E. coli isolates were more 
commonly detected in pork (76.7%) than broilers (40%) [56]. 
Yang et al. [57] reported that the Salmonella derby, 

S.typhimurium, S. london, S. rissen, S. weltevreden, 
and S.enteritidis in different meat samples of China and 
showed resistance to tetracycline (65.6%), ampicillin (45.4%), 
trimethoprim-sulfamethoxazole (40.8%), streptomycin 
(40.4%) and nalidixic acid (35.8%) The pork had a higher 
prevalence of (37.3%) Salmonella contamination followed by 
beef (16.1%), mutton (10.9%), dumplings (6.6%) and smoked 
pork (3.6%) [57]. 
 

Antimicrobial resistant bacteria in the environment 
Antibiotics are extensively used as therapeutic agents for the 
treatment of infectious diseases in human and livestock [58]. 
The use of antibiotics in large amount may pose a strong 
pressure on humans, animal and soil microbiome results in the 
emergence of antibiotic resistance [59-60]. In animals, most of 
the consumed antibiotics, 30 to 90% are excreted into the 
manure and urine [61]. Antibiotics can enter the environment 
through many ways water, sewage, effluent from 
pharmaceutical industries, hospital effluents, irrigation with 
wastewater, runoff from an agricultural field containing 
livestock manure [62-63]. Daily intake of antibiotic residues 
from the environment may largely enter the human 
gastrointestinal tract (harbouring diverse group of bacterial 
species 95% beneficial and 55% harmful and opportunistic 
pathogens)[59, 64] alter the intestinal microbiome composition 
due to the broad-spectrum influence of antibiotic on the host-
associated microbial community rather than target bacteria 
[65]. Antibiotic therapy could lead to composition changes of 
intestinal microbiota with an increase in gram positive 
bacteria, concurrent reduction of beneficial bacteria [66], and 
also induce the emergence of antibiotic-resistant bacteria, 
which could persist in human intestines for years and excreted 
through faeces [63]. Cattle faeces carry more number of 
antibiotics than swine, administration of the third generation 
cephalosporin ceftiofur in dairy cows increased the excretion 
of β-lactam and multidrug resistance genes in faeces [46, 67]. 
High prevalence of cefotaxime resistant bacteria E.coli has 
been reported in faecal samples of grazing animals in farms 
raised without antibiotic supplementation in North and 
Central Florida in the United States. Cattle faeces had higher 
cefotaxime resistant bacteria (CRB) than others. 
Environmental samples had a higher prevalence of CRB in 
water (88.6%), soil (98.7%) and forage samples (95.7%). Soil 
microbiota of CRB from farms is clustered closer together 
with that of Phylum Proteobacteria [68]. The E.coli, 
K.pneumonia and Staphylococcus lentus isolated from poultry 
house environment showed multi-drug resistant to penicillins, 
fluoroquinolones, third and fourth generation cephalosporins 
and carbapenems [69]. The E. coli isolated from faeces of all 
animals in the northern region of Ghana, Africa showed 
resistance to tetracycline (54.5%), doxycycline (27.9%), 
ciprofloxacin (11.2%), gentamicin (7.4%) and ceftazidime 
(5.6%), which was higher in poultry followed by pigs, sheep, 
cattle and the least was in goats [70]. 
The manure microbiome can influence the soil microbiome 
through direct competition and transfer antibiotic resistance 
genes (ARGs) [71], the high levels of antibiotic resistant 
bacteria in manure and manure application has been shown to 
significantly increase the abundance of ARGs in soil[72-73] 
dispersed into surrounding waterways via runoff and drainage 
[74-75]. The E.coli isolated from the hospital effluents showed 
95% resistant to third generation cephalosporin followed by 
domestic waste with hospital effluents in India. More than 22 
tetracycline or oxytetracycline resistant genes have been 
found in bacterial isolates of water environments [76], 
tetracycline resistance genes tetM, tetO, tetQ, tetW, tetC, tetH, 
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and tetZ have been reported in lagoons and groundwater 
adjacent to swine production[77-78]. Most of the environmental 
tet genes code for transport proteins, which pump the 
antibiotics out of the bacterial cell and keep the intercellular 
concentrations low to make ribosomes function normally [76, 

79]. Several macrolide resistant genes (erm) have been 
detected in Enterococcus spp. isolated from poultry raising 
wastewaters [80]. The ARGs may be transferred to pathogenic 
bacteria in the environment through horizontal gene transfer; 
agricultural dissemination of ARGs into the environment may 
perpetuate the antibiotic resistance [81].  
The resistome of the soils was assessed by screening the total 
soil DNA for clinically relevant and soil-derived antibiotic 
resistance genes. The predominant resistant microbiotas 
isolated from soil were Pseudomonas, Stenotrophomonas, 
Sphingobacterium and Chryseobacterium genera are largely 
dependent on the efflux mechanisms. Resistant mechanism of 
soil Pseudomonas spp mostly relying on Resistance-
nodulation division (RND) to confers the multi-drug 
resistance. Soil Stenotrophomonas spp and Chryseobacterium 
spp develop resistance through RND and ATP- binding 
cassette (ABC) mediated drug efflux system [82]. The 
Stenotrophomonas maltophilia usually found in soil, sewage, 
water, plants, animals and humans and showed resistance to 
tetracycline, quinolones and chloramphenicol [83-84]. 
Chryseobacterium meningosepticum is typically found in the 
environment that causes neonatal meningitis and showed 
widespread resistance to vancomycin, erythromycin and 
clindamycin [85]. 
 

Detection of antimicrobial resistant genes in bacteria and 

environment 
Traditionally, monitoring of antimicrobial resistance in 
bacteria rely on culture and antimicrobial susceptibility 

testing. It is non-expensive, time- consuming and non-
conclusive and may miss most of the bacteria uncultivable [86]. 
Currently, molecular methods are used to detect antibiotic 
resistant genes includes polymerase chain reaction (PCR), 
quantitative real time PCR (RT-PCR), multiplex PCR, whole 
genome sequencing, DNA microarray, metagenomics[87] and 
Matrix- assisted laser desorption ionization- time of flight 
mass spectrometry (MALDI-TOF-MS) is a new method and 
could become more common in future AMR characterization 
[86]. 

 

Conventional PCR and Multiplex PCR 
PCR assays have been mostly used in both pure cultures and 
mixed environmental samples for detection of specific 
antibiotic resistant genes (ARGs) encoding resistances to β-
lactams [88-89], aminoglycosides [76, 82, 90], sulphonamide [91-92], 
tetracycline [76], macrolides [76], chloramphenicol [76, 82], 
fluoroquinolones [93-94], vancomycin [88] and rifampin [82] 
(Table 4). It involves the extraction of DNA from target 
samples, amplification using a specific primer (16S rRNA 
gene) and visualization of amplified PCR gene products in 
agarose gels stained with ethidium bromide or other 
fluorescent DNA chelating dyes.  
Multiplex PCR is often used for simultaneous detection of 
environmental ARGs with various primer pairs at the same 
time [76]. PCR is considered a rapid and convenient method for 
the detection of multiple ARGs in isolated bacteria or 
environmental DNA [95-96]. However, conventional PCR is 
less suitable for the detection of point mutations within the 
target genes. DNA sequencing is commonly used to detect the 
ARGs in PCR products [86, 97]. The RT-PCR can detect single 
point mutations in a given gene if sequence-specific DNA 
probes are used for targeting the mutation area. 

 

Table 4: Detection of AMR genes in bacteria and environment 
 

Antibiotic class 
Name of the 

antibiotics 

Antimicrobial 

resistant genes 
Function Resistant bacteria Reference 

Β-lactams 

Penicillin 

 

(Ampicillin) 

blaSHV, blaTEM, blaIPM, 

blaGES 

 

β-lactamase encoding 

penicillin resistance, 

Metallo-β-lactamase 

Aeromonas sp, Enterobacter sp, 

Salmonella sp, Staphylococci sp, 

Vibrio sp, 

Acinetobacter sp 

[82] 

AmpC, OXA-8, 

VIM, KPC, OXA-48 
Carbapenemase Enterobacteriaceae family 

[ 82, 88] 

 

Methicillin mec A - 
Methicillin resistant 

Staphylococcus aureus 
[88] 

Cephalosporin 

BlaCMY, CTX-M, 

OXA-1, 

CMY-2 

β-lactamase encoding 

cephalosporin resistance 
E.coli [82] 

Aminoglycosides 

Streptomycin aadA1, ant Adenylyl transferases 
Aeromonas sp Citrobacter sp, 

Shigella sp 
[76] 

Gentamicin 
aac (aac(3)-IV) 

 

Aminoglycoside 

acetyltransferases 
Enterococci sp Streptococci sp [76, 82, 90] 

Neomycin aph, neptII Phosphotransferase Microbial communities [76] 

Sulfonamide 

 
 

Sul I, Sul II, Sul III, 

dfr 

Dihydropteroate 

synthase 

Aeromonas sp, E.coli, 

Listeria sp, 

Actinobacter sp. 

Salmonella sp, 

Vibrio sp 

[91-92] 

Tetracycline  

tet A, B,C,D and E Efflux pump resistance 

Aeromonas sp, E.coli, 

Listeria sp, Pseudomonas sp, 

Salmonella sp, Vibrio sp 

[76] 

tet M,O,S, Q and W 
Ribosomal protection 

proteins 

Aeromonas, 

Bacillus sp, E.coli Lactococcus sp, 

Pseudoalteromonas sp, 

Vibrio sp 

[76] 

Macrolides  erm A, B,C,F,T and Ribosomal RNA Enterococcus sp, Streptococcus sp [76] 
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X methylation 

Chloramphenicol Chloramphenicol 

catA1 
Chloramphenicol 

Acetyltransferases 
Pseudomonas sp [76] 

CmlA 
Transporter resistance 

 
E.coli [76] 

bcr/cfl Efflux pump  [82] 

Quinolones Fluoroquinolones Qnr A , B & S Efflux pump 

E.coli, 

K.pneumonia, 

P.mirabillis 

[93],[94] 

Glycopeptides Vancomycin Van A and B - Enterococcus faecium 
[88] 

 

Rifampin  
arr- like-1 

arr- like-2 

rifampin ADP-

ribosyltransferases 
Soil [82] 

 

DNA Microarray 

DNA microarrays are genomic tools that have been used to 

detect drug resistant genes, and are commonly used for gene 

profiling and expression studies. Identibac microarrays have 

been used to determine the presence of AMR genes in both 

aerobic and anaerobic gram-negative bacteria isolated from 

human faeces [86]. DNA microarray was constructed of 70mer 

oligonucelotide probes designed to detect the genes encoding 

resistance to aminoglycosides, β-lactams, chloramphenicols, 

glycopeptides, heavy metals, lincosamides, macrolides, 

metronidazoles, polyketides, quaternary ammonium 

compounds, streptogramins, sulfonamides, tetracyclines, and 

trimethoprims as well as resistance transfer genes for some 

strains of Salmonella enterica [98].  

 

Metagenomic analysis 

Metagenomics is a molecular tool used to analyze the DNA of 

microbial community acquired from environmental samples 

without culture [99]. It has helped to elucidate a strong 

correlation between AMR and microbiome through the 

discovery of complex microbial communities and their 

functional components involved in AMR in bacteria in 

clinical and environmental samples [100]. Metagenomics 

employs two distinct approaches for analysis: sequence-

driven and function driven [101]. Both are based on next-

generation sequencing techniques that have been developed 

by commercial organizations. In the sequence-driven method, 

multiple sequence reads are generated and analyzed using 

sequence-analysis software [102]. Functional metagenomics has 

helped in the discovery of new antimicrobial resistant 

determinants and mobilome and novel mechanisms of 

antibiotic resistance [103], identification of new ARGs in 

natural environments overlooks the compulsion of having 

previous knowledge of these genes [104-105].  

 

Matrix- assisted laser desorption ionization- time of flight 

mass spectrometry (MALDI-TOF-MS)  

MALDI-TOF-MS is a powerful analytical tool, which has 

been recently introduced in many clinical laboratories for the 

identification of bacterial species in clinical samples [86]. It is 

used to analyze biomolecules such as DNA, carbohydrates, 

proteins and peptides by their ability to become ionized and 

enter the gas phase and then measuring their time of flight. 

Here, the mass to charge (m/z) ratio of the resulting molecular 

fragments is analyzed to produce a molecular signature and 

will detect protein between the mass range of 2 and 20 kDa 
[106-107]. Analysis can be made directly on biological samples 

of blood and urine and each spectrum can be compared to 

commercial databases containing species-specific spectral 

information of microorganism for species identification[106], 

specific proteins or enzymes as well as smaller biomolecules 

such as antimicrobial agents and their degradation products 
[106, 108]. A large proportion of AMR determinants are proteins, 

so it is in principle possible to detect these or proteolytic 

fragments of AMR, directly in the molecular signature from 

the MALDI-TOF-MS, thus providing an on-the-fly resistance 

profile [86,109]. MALDI-TOF-MS is commonly used for rapid 

identification of microorganisms and to select the target 

antibiotics for treatment to improve the clinical outcome in 

hospital settings [110-111]. 

 

An alternate approach to antimicrobial resistance 

Investigation of an alternative approach to tackle the 

antimicrobial resistance problem globally most important[112]. 

The antibiotic alternatives could regulate both commensal and 

pathogenic bacteria populations. The antimicrobial 

alternatives such as phage therapy, prebiotics, probiotics, 

metals and minerals, organic acids and essential oils are 

commonly used to enhance host resistance and also to reduce 

the disease incidence in the population [113]. 

 

Bacteriophage 

Bacteriophages are viruses that can infect and kill the bacteria 

without any negative effect on human or animal cells used to 

overcome the problem of microbial resistance [114]. However, 

Phage therapy is not widely used currently and is approved in 

few countries [115], but it has the potential to control the 

colonization of E.coli, Salmonella spp and Campylobacter 

spp in chicken [113]. 

 

Metals and minerals 

The metals such as copper (Cu2+), zinc (Zn2+), and silver 

(Ag+) have antibacterial activity, it can disrupt bacterial 

protein functions, generate reactive oxygen species and causes 

damage to bacterial DNA [116-117]. The metallic copper has 

intrinsically antimicrobial properties and increasing attention 

in the face of growing antibiotic resistant bacteria [118]. 

Copper-containing compounds such as CuSO4 and Cu(OH)2 

are used as the traditional inorganic antibacterial agents and 

antifungal activity [119]. Copper ions have demonstrated 

antimicrobial activity against a wide range of 

microorganisms, such as Staphylococcus aureus, Salmonella 

enteritids, Campylobacter jejuni, Escherichia coli, and 

Listeria monocytogenes [120]. Additionally, copper has been 

determined to be an effective antimicrobial for udder washes 

and prove active against a panel of bacteria and yeasts 

associated with bovine mastitis [121]. Copper and Zinc salts are 

commonly added to animal feeds in concentrations above 

dietary requirements to improve growth. Similarly, Zinc oxide 

added to pig diets has been effective in reducing post-weaning 

diarrhoea [122]. Metal nanoparticles such as silver, copper 

oxide, and zinc oxide are of particular interest for their 
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antimicrobial properties. Copper oxide nanoparticles had 

excellent antimicrobial activity against various bacteria [123]. 

Zinc oxide nanoparticles have been demonstrated as effective 

bactericidal agents against antibiotic resistant S. aureus and S. 

epidermidis [124]. Silver nanoparticles have also been shown to 

be effective against bacterial and fungal species, including 

some important pathogens [113, 125]. 

 

Prebiotics and probiotics 

Prebiotics are potential alternatives to antibiotics used for 

growth promotion. They are indigestible carbohydrates source 

fructans, oligofructose, inulin, fructooligosaccharides, 

galactan, galactooligosaccharides, starch, pectin, fiber 

components and milk oligosaccharides, alter the colon 

microflora in favor of a healthier gastrointestinal 

environment[126]. Probiotics are natural feed additives used to 

improve health and growth performance. Bacteria like 

bifidobacteria, lactobacilli, yeast and fungai Saccharomyces 

cerevisiae and Kluyveromyces are used as probiotics [127-128]. 

Administration of Lactobacillus sporogenes (100 mg/kg feed) 

increased body weight and improved feed conversion ratio in 

broilers and increased egg production in laying hens [126,129]. 

 

Organic acids 

Organic acids are composed of individual or blends of several 

acids that have antimicrobial activities similar to those of 

antibiotics [130]. It has been used for decades in commercial 

compound feeds, mostly for feed preservation, for which 

formic and propionic acids are effective by altering the pH of 

the gastrointestinal tract [131-132], several other acids like lactic, 

citric, fumaric and sorbic acids and their salts calcium formate 

and calcium propionate are used as feed additives [133-134]. The 

addition of organic acids in the diet improves the proliferation 

of Lactobacillus sp and reduce the harmful bacteria [135-136] 

and protects the young chicks by competitive exclusion of 

most common enteric pathogens Salmonella sp 

Campylobacter sp and Escherichia coli [137-138]. It also 

enhances nutrient utilization, growth, immune response and 

feed conversion ratio in poultry [134]. 

 

Essential oils 

Essential oils are complex mixtures of volatile compounds 

isolated from the whole plant or plant parts by pressing and 

distillation [139-140]. Most constituents of essential oils are 

terpenoids and phenylpropanoids. Terpenoids are more 

abundant than phenylpropanoids [141], posses antibacterial and 

antioxidant activities. The plant families with medicinal 

properties include garlic (Alliaceae), anise (Apiaceae), 

oregano (Lamiaceae), thyme (Myrtaceae) cinnamon 

(Lauraceae), black pepper (Piperaceae) and turmeric 

(Zingiberaceae) [142], lemongrass and rosewood have high 

bactericidal activity rather than bacteriostatic effects [143]. 

Thymol is a derivative of p-Cymene extracted from Thymus 

vulgaris, eugenol is oil of clove and carvacrol oil extracted 

from Origanum vulgare has high antimicrobial activity 

against E.coli and S. typhimurium [144]. The carvacrol, 

cinnamaldehyde, and capsicum oleoresin increased the gut 

lactobacilli and the ratio of lactobacilli to Enterobacteria in 

the jejunum and cecum of early-weaned piglets [145-146]. 

 

Conclusion 

The global antimicrobial resistance is controlled by the 

countrywide implementation of monitoring and surveillance 

programme (antimicrobial usage, antimicrobial resistance 

genes in animals, animal products and environment). 

Knowledge on a new mechanism of antibiotic resistance in 

bacteria and its rapid identification, implementation of one 

health approach, judicious use of antibiotics, regulation of 

antibiotic sale, research and development for innovation of 

new antibiotics class, restricted use of newer antibiotics and 

reducing the incidence of infection through hand sanitation.  
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