Occurrence and aetio-pathological study on interstitial pneumonia of sheep (Ovis aries)

Rohit Kumar Tiwari, Vikas Galav, Sandeep Kumar Sharma, Sandeep Marodia, Brajesh Kumar and Manish Agrawal

Abstract
The present study was conducted to evaluate the interstitial pneumonia associated with the bacterial aetiology in sheep from Jaipur Division, Rajasthan. A total of 436 lungs were examined of which 102 lungs (23.40%) found with gross lesions were collected intact for the study. For bacteriological examination, swabs were collected at site of lesion from within tissue parenchyma under sterile conditions. Of the total 102 sheep lungs with clear gross lesions, 79 (77.45 %) lungs were found to harbor bacteria. For pathomorphological evaluation, only those lungs (79) that were found infected with bacteria were considered. Interstitial pneumonia was noticed in 21 (26.50 %) cases. Grossly, lungs were pale to red, heavy and firm, rubberty and cut surface had a meaty appearance and showed frothy exudate from the incised bronchi and bronchioles. Rib impressions were also observed over the costal surface of diaphragmatic lobes. Microscopically, the alveoli were distorted in shape, alveolar septae was thickened with infiltration of mononuclear cells and macrophages. At some places, the alveolar epithelium revealed foetalisation with hyperplasia of type-II pneumocytes. In present study, bacteria isolated from lungs with interstitial pneumonia were Staphylococcus spp, Streptococcus spp, Pseudomonas spp, E. coli, Enterobacter spp and klebsiella spp. mostly as mixed infections with no definite preference to single bacterial specie.

Keywords: bacteria, histopathology, lungs, pneumonia, sheep

Introduction
Sheep and goats were perhaps the first ruminants to be domesticated by man. Sheep is an important economic animal, which is domesticated by people worldwide. Sheep suites to the need of small land holders and village system due to low initial investment, ease of rearing and high feed conversion efficiency. Besides this, they are very well adapted to harsh climate, long migration, resistance to tropical diseases, poor nutrition, shortage of drinking water and water quality. Among various causes of production losses in sheep and goat industry, losses due to infectious diseases are major contributors, which cause decrease in weight gain, milk yield, meat, wool production and high mortality among kids and lambs [1]. Among pathological conditions diarrhea and pneumonia are most common causes of mortality in small ruminants [2]. Pneumonia in sheep is associated with a wide range of infectious agents, which includes bacterial, viral, fungal and parasitic agents. Bacterial pneumonias are most common and they may act as a primary or secondary cause to it [3, 4]. Pneumonia in sheep and goats is classified according to the involvement of different pulmonary regions and anatomical sites, and nature of the inflammatory exudate and reaction present [5, 6]. The alteration in the homeostatic environment of the lung parenchyma due to stressors like physiological/environmental stress, decreased immunity, infectious pathogens and the environmental pollutants lead to the development of the pneumonia [7]. So the etio-pathological study of respiratory system is very important, as lungs diseases bear a major segment of total burden of sheep diseases and considered the most important cause of illness and death. The studies of various pathological conditions of respiratory system are important for the pathologist, to understand the altered structure, disturbed function and related clinical outcome.

Material and Methods
A. Source And Collection Of Samples
The tissue specimens of lungs for the proposed investigation were collected from various slaughter houses and meat sales outlets of Jaipur Division, Rajasthan.

Brajesh Kumar
Assistant Professor, Dept of Veterinary Pathology, ACVM, Jaipur, Rajasthan, India

Manish Agrawal
Assistant Professor, Dept of Veterinary Pathology, PGIVER, Jaipur, Rajasthan, India

Sandeep Kumar Sharma
Assistant Professor, Dept of Veterinary Clinical Complex, ACVM, Jaipur, Rajasthan, India

Sandeep Marodia
Assistant Professor, Dept of Veterinary Microbiology, PGIVER, Jaipur, Rajasthan, India

Rohit Kumar Tiwari
Teaching Associate, Veterinary University Training and Research Centre, Kumher, Bharatpur, Rajasthan, India

Vikas Galav
Assistant Professor, Dept of Veterinary Pathology, PGIVER, Jaipur, Rajasthan, India

Sandeep Kumar Sharma
Assistant Professor, Dept of Veterinary Pathology, PGIVER, Jaipur, Rajasthan, India

Manish Agrawal
Assistant Professor, Dept of Veterinary Pathology, PGIVER, Jaipur, Rajasthan, India

Corresponding Author:
Vikas Galav
Assistant Professor, Dept of Veterinary Pathology, PGIVER, Jaipur, Rajasthan, India
The tissue samples were also collected from sheep carcasses received from institutional farm and field for the post-mortem examination at Department of Veterinary Pathology, PGIVER, Jaipur. During post-mortem examination, whole lungs from sheep carcass were thoroughly examined grossly for any alterations in morphology in terms of shape, size, color, consistency, location and presence of cysts, tumors and abscesses, other growths and lesions etc. as screened by visual examination and gross palpation. Those grossly indicative of pathology were collected and put into sterile polythene bag and transported on ice pack to the laboratory. For bacteriological examinations the surface of the lung was cleaned by 70 percent ethanol under laminar hood. The lungs were incised using sterilized scalpel and swabs were collected from tissue parenchyma at site of lesions for microbial culture. A total of 436 sheep lungs were examined, out of which 102 sheep lungs with gross damage were employed in the study.

B. Processing Of Tissue Samples
Following collection of swabs for microbial culture, all the lung samples were preserved in 10 percent buffered formal saline. Representative tissue sample was incised from affected parenchyma measuring about 2-5 mm in thickness and presenting the lesions alongside normal tissue for further histopathological processing. The tissue samples were processed mechanically by standard processing technique (8). Tissue pieces were dehydrated, cleared and following paraffin embedding, 4-6 micron thick sections were cut using manual microtome (HM 325, Thermo Shandon). Tissue ribbons were mounted over albuminized slides for histological staining.

C. Staining Of Tissue Sections
The tissue sections were stained using standard haematoxylin and eosin method. Following deparaffinization, the sections were hydrated using serial changes in ethanol and stained using harris haematoxylin. After differentiation and follow up staining with Eosin, the slides were dehydrated and then permanently mounted using DPX [9, 10].

D. Bacterial Isolation, Identification And Phenotypic Characterization
For aetio-pathological correlation, swabs collected from lung lesions were streaked over (i) Mannitol Salt Agar (MSA), (ii) Edward’s Medium Agar, (iii) MacConkey Agar MCA) and (iv) Cetrimide Agar plates and thereafter incubated for 24 hrs at 37 °C. The MSA and Edwards medium were employed to target the gram positive bacterial pathogens (Staphylococcus spp. and Streptococcus spp.) and those of MCA and Cetrimide were employed to target the gram negative bacterial pathogens including those from Enterobacteriaceae (Pseudomonas spp., Enterobacter spp., Escherichia coli and Klebsiella spp.). Post 24 hrs incubation, bacterial colonies were closely observed for their morphology, colour and consistency. Gram’s staining was used as primary identification test. Biochemical and secondary metabolic tests including hemolysis test was also conducted using standard methods [11, 12].

Results and Discussion
The tissue specimens of lungs for the proposed investigation were collected from various slaughter houses, field postmortems and meat sales outlets of Jaipur, Rajasthan. Out of 436 total lungs examined, only 102 lungs (23.40%) found with gross lesions. Of the 102 lungs found with gross lesions, 79 affected lungs (77.50%) were positive for bacterial isolation and for correlative study only those were considered for pathomorphological assessment.

The incidence of the inflammatory conditions was 84.80% (67 out of 79) in the present study which constituted various types of pneumonia and pleuritis. In present study, occurrence of interstitial pneumonia was reported at frequency of 26.50% (21 out of 79). These findings in sheep are higher than most of the other studies which included reported occurrence of 23.61% [13], 16.41% [14, 15], 15% [16], 7.88% [17], 7% [18] and 2.67% [19] in sheep lungs.

In present study, on gross observation, lungs were pale to red, heavy and firm, rubbery and in certain cases failed to collapse (Fig. 1). Cut surface had a meaty appearance and showed frothy exudate from the incised bronchi and bronchioles (Fig. 2). Rib impressions were also observed over the costal surface of diaphragmatic lobes.

The alveolar interstitium septae were congested and thickened with marked infiltration of mononuclear cell, macrophages...
and RBCs also at few places (Fig. 4 and Fig. 5). At some places, the alveolar epithelium revealed foetalization with hyperplasia of type-II pneumocytes. Fibrous tissue proliferation along the alveolar walls and associated alveolar fibrosis was also noticed in few sections.

Fig 3: Microphotograph Showing Distorted Alveoli Spaces, Sheep Lung, H&E 100x

Fig 4: Microphotograph Showing Destruction of Alveolar Epithelial Lining and Thickening of Alveolar Septa, Sheep Lung, H&E 100x

Fig 5: Microphotograph Showing Alveoli with Epithelial Damage, Thickening of Alveolar Septa, Increased RBCs and Mononuclear Engagement in Lung Parenchyma, H&E 400x

The findings of interstitial pneumonia were in close accordance with those of reporting lungs that were hard on palpation and microscopically, alveolar septae were thickened due to accumulation of mononuclear cells and proliferation of fibrous connective tissue. Enlarged lungs with pale colour, rubbery consistency, oedema in alveoli and alveolar septa and hyperplasia of cells type II (epithelialization) and interstitial pneumonia having pale to red, heavy and firm lungs with rib impressions and that failed to collapse when thorax was opened. Alveolar septae were congested and alveoli were distorted in shape. The observations in present study were also similar to those reported by.

In present study, bacteria isolated from lungs with interstitial pneumonia were *Staphylococcus* spp, *Streptococcus* spp, *Pseudomonas* spp, *E. coli*, *Enterobacter* spp and *Klebsiella* spp. Other studies have also reported isolation of similar bacterial species as reports for *Escherichia coli* [10], *E. coli*, *Pseudomonas* spp and *Staphylococcus* spp [14, 24], *Streptococcus pyogenes* and *Staphylococcus aureus* [15], *Streptococcus pneumonia* [19], *Staphylococcus* spp and *Klebsiella* spp [20, 24].

Conclusion

The current investigation unveiled that more than 26.50 % of sheep having respiratory infections in Jaipur are likely to be affected with interstitial pneumonia. In sheep, most pulmonary diseases are diagnosed as acute however changes in lung tissue could not be ascertained. Evaluating lung tissues based on histopathology, give a confirmative assessment of various types of pneumonia in sheep and this could further be employed in various abattoirs and regional veterinary laboratories to generate additional epidemiological data for a better disease control and prevention measures. Further bacterial association of interstitial pneumonia with *Staphylococcus* spp, *Streptococcus* spp, *Pseudomonas* spp, *E. coli*, *Enterobacter* spp and *Klebsiella* spp, mostly as mixed infections provides a significant evidence of bacterial involvement in etiology and pathogenesis of interstitial pneumonia in sheep. The data generated would further assist to formulate feasible and cost-effective control strategies in sheep diseases.

Acknowledgement

We acknowledge the support and guidance provided by Dr. Vikas Galav, the Major Advisor for this piece of work at PGIVER and also DEAN, PGIVER, Jaipur for providing necessary facilities to carry out this research work.

References

