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Abstract 
Sub-acute ruminal acidosis (SARA) is an economically important clinical condition and contributes to 

loss of farm returns, second only to mastitis. It is more prominent in cows in their early and mid-

lactation, having peak milk yield and considerably high dry matter intake. SARA detection in a dairy 

farm is difficult as it does not present any pathognomonic symptoms, and the manifestation of clinical 

signs is delayed. SARA's characteristic feature is the occurrence of daily fluctuations of pH when the pH 

drops to the range of 5.2 to 6 for a considerable period due to the accumulation of volatile fatty acids in 

the rumen. Grain-based diets, which have higher proportions of non-structural carbohydrates, high-

quality fermentable forages like legumes, and lack of physically adequate dietary fibre (peNDF), are the 

significant causes of SARA. SARA consequences include the inflammation of rumen mucosa and several 

other organs and long-term health and economic losses like reduced feed intake reduced fibre 

degradability, drop in milk yield and milk fat, damage to the gastrointestinal tract, laminitis, liver 

dysfunctions, and lameness. SARA can be prevented and treated by the right combination and judicious 

use of exogenous dietary buffers like sodium bicarbonate, magnesium oxide, and direct-fed microbial 

like yeast. This review aims to provide a gist of the recent literature available on the pathophysiological 

aspects, indicators, detection techniques, prevalence, and preventive measures for SARA, including the 

mechanism of action and utility of the commonly used dietary buffers and direct-fed microbials.  
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Introduction 

India ranks first in the world in terms of milk production. The annual milk production was 

176.3 million tonnes for the year 2017-18 [1]. Nonetheless, the per capita production of milk is 

still far below the world average. Having the world's largest herd, the country has enormous 

prospects of transforming the dairy sector into a humongous enterprise, provided the livestock 

is fed with nutritionally adequate diets. Current practices at intensive dairy systems advocate 

concentrate feeding in order to elevate the plane of nutrition. Thus, cattle are fed high starch 

and low fibre [2] to increase milk production [3, 4]. Ruminants are adapted to digest mainly 

forage diets [5]. Any alteration in the physical form or effectiveness of the diet, e.g. smaller 

forage particle size or fine grinding of grain, decreases ruminal pH, giving rise to sub-acute 

ruminal acidosis (SARA) [6]. Thus, concentrate feeding affects rumen health. The more serious 

concern about the decline in ruminal pH is its sub-clinical nature, making it more difficult to 

detect and cure, thus causing considerable losses to the animal and the farm productivity. 

SARA has been a significant menace to Indian dairy farms over the years, second only to 

mastitis regarding the monetary losses caused [7]. It alters fermentation patterns, reduces dry 

matter intake, milk yield, fat content, and consequently, farm profitability [8]. Garret et al. [9] 

Reported that approximately 19% of cows in their early-lactation period and 26% of cows in 

their mid-lactation period are affected with metabolic acidosis in the United States. The figures 

remain similar even after 23 years [10], as SARA's diagnosis is quite challenging due to its sub-

clinical nature. Early lactation cattle are prone to acidosis due to their energy-dense diet and 

unstable microflora [11], and mid-lactation cows suffer as they have a higher dry matter intake 
[12]. 
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Acute and sub-acute ruminal acidosis 

The significant difference between acute and sub-acute 

ruminal acidosis lies in their duration of onset of symptoms. 

While acute acidosis is a grave condition with a poor 

prognosis, the number of incidences in dairy cattle is 

relatively minor. It is not a significant concern in feedlot 

cattle [13]. 

 
Table 1: Differences between acute and sub-acute ruminal acidosis (Plaizier et al., 2008 [14]; Calsamiglia et al., 2008 [7]) 

 

Parameters Acute acidosis Subacute acidosis 

Clinical signs Present Absent 

Mortality Yes No 

Rumen pH <5 5-5.5 

Lactic acid 50-120 mM 0-5 mm 

Volatile fatty acids <100 mm 150-225 mm 

Lactic acid producing 

bacteria 
Increase Increase 

Lactic acid utilizers Decrease Increase 

Ciliate protozoa Decrease Decrease 

Incidence 

14% incidences 

Generally goes 

unnoticed 

44% incidences 

Reduced dry matter intake and fiber digestion milk fat depression, laminitis, liver 

abscesses, or death 

Duration <90 minutes in a day 111-180 minutes in a day 

 

pH and buffering of rumen 

The ruminal pH is about 6.2-6.8, which fluctuates by ±2.5 

points depending on the type and frequency of feeding [15]. 

The major contributors to the buffering action of rumen liquor 

are phosphate-bicarbonate buffer with urea and mucous 

secreted in the saliva. Cattle produce about 200-300 L of 

saliva daily, which has about 100-140 mEq of bicarbonates. It 

constitutes about 30-40% of the buffering capacity of the 

rumen. 

 

HPO4
2- + H30+ ↔ H2PO4

 - + H20   .... (1) 

HCO3
- + H3O+ ↔ H2CO3 + H2O ↔ CO2 + 2H2O  ....(2) 

 

Equations (1) and (2) [16] summarize the buffering 

mechanism of saliva and rumen.  

Another source of buffering action is feed, majorly by 

legumes. If the diet is predominantly rich in grains, over 

forages, the feed's buffering action is significantly reduced 

and affects the rumen's pH. Diets rich in concentrate favor the 

synthesis of propionate by the acrylate pathway, leading to the 

formation and accumulation of lactic acid in the rumen, 

causing a decline in pH. In severe cases, the organ's muscular 

activity can also be hampered, and atony may occur [17]. The 

rumen papillae, mainly adopted to absorb and transport VFA 

from the rumen to the bloodstream, may erode. Thus, gram-

negative bacteria may leak into the systemic circulation, 

causing septicemia and giving rise to various disorders like 

ruminitis, rumen parakeratosis, metabolic acidosis, lameness, 

hepatic abscessation, pneumonia, and death [18]. 

 

 
 

Fig 1: Etiopathology of acidosis 

 

 

By increasing the amount of fermentable carbohydrates by 

grain feeding, pH drops below the expected levels by 

accumulating lactate. The ruminal pH pattern displays a 

biphasic curve with a decline in pH immediately after feeding. 

http://www.entomoljournal.com/


Journal of Entomology and Zoology Studies http://www.entomoljournal.com 
 

~ 595 ~ 

The pH achieves a minimum value 2 to 3 h after feeding and 

increases continuously until the next feeding [19]. However, 

the pattern of pH is much more stable and higher (≈6.5) when 

the animal is maintained on ad-libitum hay, as opposed to 

concentrating feeding [15] 

 

Rumen microflora: The rumen milieu is a complex 

ecosystem. Protozoa engulf bacteria to satiate their 

nitrogenous needs [20]. This bacterial uptake drops to nil if the 

pH falls to 5. The protozoal population is completely 

demolished at this pH [21]. A decline in ruminal pH also 

drastically reduces the population of cellulolytic bacteria, as 

they are adapted to grow in near-neutral pH [22, 23]. The 

accumulation of lactic acid favors lactobacilli's growth, which 

carries out fermentation and further worsens the rumen milieu 
[24]. 

 

Clinical signs of SARA 

Although there are no confirmatory signs for SARA, and it is 

called 'silent sickness' of the herd [25], some symptoms can be 

considered indicative of the condition. 

▪ Decreased voluntary DMI 

▪ Losing of body condition and emaciation 

▪ Reduction in milk yield and fat  

▪ Rumenitis–caudal vena cava syndrome complex, 

▪ Liver abscesses 

▪ Lameness [26]. 

 

Diagnosis of SARA 

The easiest reliable technique to detect sub-acute ruminal 

acidosis is to monitor reticulo-ruminal pH [27] continuously. 

The ruminal pH is lowest till 5-8 h after feeding TMR. More 

accurate estimation of pH can be done by collecting ruminal 

samples by various methods viz., oral intubation using a 

probe and ruminal pump, rumenocentesis, intraluminal 

sensors, evaluation of dung for the presence of bubbles and 

lipopolysaccharides, measurement of ruminal thickness, and 

blood acid-base analysis [10]. 

 

Clinical Sequelae of SARA 

1. Metabolic acidosis: It is unclear that lactate accumulates 

in the rumen and has a metabolic acidosis role [28]. 

However, it induces inappetence in early lactation 

periods due to high dry matter intake [29]. Due to ruminal 

acidosis, cellular functions are impaired, and VFA 

concentration rises in the peripheral circulation, which 

affects insulin secretion [30], reduced phagocytic activity 
[31], reduced neutrophil migration [32], increased cortisol 

secretion [33]. Long-term acidosis may lead to 

immunosuppression and a decrease in milk production 
[34]. 

2. Rumenitis: Accumulation of VFA's like butyrate, 

propionate and lactate may be involved in the 

pathogenesis of rumenitis. Parakeratosis results from 

acute acidic conditions, which also affect the long-term 

absorption capacity of the ruminal mucosa, making it 

susceptible to the entry of gram-negative bacteria like 

Fusobacterium necrophorum. The bacteria might also 

migrate to the liver as emboli, leading to the rumenitis 

liver abscess complex [35]. 

3. Abomasal displacement: Increased flux of ruminal 

gases and VFA between abomasum and rumen may lead 

to abomasal displacement, which is complemented by the 

fact that low functional fiber in the ration also causes the 

same [35]. 

4. Laminitis: Endotoxins produced by gram-negative 

bacteria in the rumen migrate to various organs of the 

body by embolism. If they reach the hoof, induce a 

vascular reaction leading to vasoconstriction. 

Inflammation and pododermatitis follow the course [36]. 

5. Bloat: The release of macromolecules like 

mucopolysaccharides and endotoxins unknown 

macromolecules from gram-negative bacteria leads to the 

formation of a static foam, leading to a drop in pH and 

accumulation of gas [37]. 

6. The decrease in milk fat: An increase in the 

concentration of protons and a decline in the proportion 

of acetate in the rumen leads to the incomplete 

biohydrogenation of unsaturated fats to various 

intermediates. Hence the final fat yield is decreased [38]. 

 

Prevention and treatment 

SARA being a silent condition, displays delayed symptoms 

and hence makes the prevention difficult. Nevertheless, 

adequate nutrition and adaptation of microflora to the feed are 

crucial to preventing SARA incidences in the herd [39]. 

Physically effective fibre (peNDF>1.18) in the diet stimulates 

saliva production, and hence ruminal buffering, assisting in 

maintaining rumen pH [40]. Exogenous preventive measures 

like buffers and direct-fed microbials also provide an effective 

tool for monitoring and preventing SARA. The mode of 

action and effects of specific dietary buffers and DFMs are 

described below: 

 

Effects of exogenous buffers on rumen health 

▪ The decline in ruminal urea concentration 

▪ The increased flow of undegraded starch from the rumen 

▪ Greater microbial utilization of ammonia N with an 

increased level of energy supplied 

▪ Increase water intake, stabilize rumen pH 

▪ Buffers enhance cellulose digestion and increase rumen 

turnover 

▪ Buffers improve protein solubility; hence microbial 

protein synthesis is better [41] 

▪ Buffers increase the completeness of biohydrogenation & 

decrease the formation of intermediates. They also 

increase acetate and decrease propionate [42]. 

▪ Buffers increase milk protein content due to better 

utilization by microbes. Cationic salts improve lactation 

performance by improving ruminal buffering ability, 

blood pH, rumen microbial synthesis, and 

biohydrogenation in the rumen [43]. 

 

The mode of action and effects of specific dietary buffers is 

described below. 

 

Bicarbonates 

The dissociation constant of sodium bicarbonate is 6.25, and 

they have a short half-life [44]. Bicarbonates have a significant 

buffering action, which compensates for saliva and increases 

the DMI [45]. Buffers increase the HCO3
- concentration in 

ruminal fluid and shift the equilibrium towards CO2, 

decreasing the free H+ ion concentration and increasing the 

pH. By adding dietary buffers, there is an increase in the 

proportion of acetate, while the molar proportions of 

propionate and butyrate remain the same. For every mole of 

VFA that leaves the rumen, one proton is added (Fig. 2). 

Bicarbonates neutralize protons & increase the dilution rate of 
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rumen [46]. Bicarbonates increase the voluntary water intake 

by the animals, decreasing the rumen osmolality. Hence the 

flow of starch increases, preventing its accumulation. This 

assists in hindering the growth of lactobacilli in the rumen [47]. 

Increased bacterial nitrogen flow increases bacterial protein 

synthesis [48], while the rise in pH improves protein utilization 

by increasing its solubility [49]. Buffers also improve nitrogen 

retention by increased nitrogen retention [50]. 

 

 
 

Fig 2: Exchange of protons and VFA from the ruminal wall 

(Adapted from Bannick et al., 2012) 

 

Potassium carbonate: It has a similar action mechanism as 

sodium bicarbonate. Nonetheless it is a more potent 

neutralizing agent [51]. It is generally preferred to alleviate 

incidences of fat milk depression, as it favors the predominant 

pathway of milk fat dehydrogenation. Milk fat increases by 

24% on a matter basis in cows fed with potassium carbonate, 

while the milk yield declines [52]. Cows with their potassium 

carbonate as top dressing have more forage intake than cows 

fed with sodium bicarbonate. In a study by Zali et al. 2019 

[53], two new buffers called HBNa and HBK containing 

sodium and potassium carbonates respectively, were 

developed and evaluated for milk yield in Holstein Friesian 

cows. It was observed that there was no difference in milk 

yield and 3.5% FCM between the groups fed with two 

different buffers. Milk fat and protein%, calcium levels in 

cows fed with potassium carbonate buffer were higher than 

the sodium-based buffer. The new commercial buffer HBK 

proved to give the best results in milk composition at the level 

of 6% of DMI. 

 

Magnesium oxide: MgO is yet another effective and 

commonly used buffer in ruminants. It is generally the 

preferred top dressing overfeed, in combination with sodium 

bicarbonate. It increases the uptake of blood metabolites like 

plasma acetate and triglycerides by the mammary gland, 

hence raising the fat content. Its efficacy depends on its 

particle size. The dose rate is 45-90 g/d. The preferred ratio is 

2-3:1 with NaHCO3 [54]. In a comparative evaluation of MgO 

and soda bicarb by Bach et al. (2018) [55], it was found that 

0.4% MgO can sustain pH fluctuations in rumen more than 

0.8% soda bicarb when the animal is subjected to a high 

concentrate challenge.  

 

Sodium sesquicarbonate: It is a double salt of sodium 

bicarbonate and sodium carbonate, having a pH of 9.9, as 

opposed to bicarbonates, which have a pH of 8.4. Hence the 

acid-neutralizing capability is higher than bicarbonate, with 

the added advantage of being cost-effective. Dietary 

supplementation of sesquicarboante decreases the molar 

proportions of butyrate and valerate. It improves milk fat and 

4% FCM yield. Although in an in-vitro study by Sharma et 

al., [56], it was found that there was no change in in vitro DM 

digestibility, ammonia nitrogen, and molar proportions of 

VFAs. In-vivo studies suggest differently [45]. 

 

Zeolite: It has a high attraction for water & cations like K+, 

NH4
+, Ca2+, and Mg2+, which are reversibly bound. When 

these ions are released, fermentation is facilitated. Osmotic 

activity regulates pH by buffering against hydrogen ions of 

organic acids. It also improves nitrogen utilization. 

A comprehensive summary of the effect of different buffers 

by various researchers over the years is presented in table 2. 

 

Table 2: Effect of different buffers on different diet patterns by various researchers 
 

Diet 
Buffer and dose 

rate 

Effect on milk 

fat% 
Effect on milk yield 

Effect on 

milk 

protein% 

References 

Corn silage 180g NaHCO3 0.25% Increase 0.12% increased No change 
(Fishert and Mackay, 

1983) [57] 

68% concentrate 1.5% NaHCO3 0.45% increase 3.5% FCM was higher No effect (Xu et al., 1994) [58] 

Rotational grazing 1.25% NaHCO3 No change No change No change (Rearte et al., 1984) [59] 

Hay crop silage 70% 

roughage + 30% 

concentrate 

0.7% NaHCO3 0.09% increase 
FCM decreased by 0.3 

kg 
0.04% rise (Stokes et al.,1985) [60] 

Corn silage 40% +60% 

concentrate 

1% Bicarbonate 

1% sesquicarbonate 
0.15% increase 

4% FCM higher for 

sequicarbonate 
No effect 

(Ghorbani et al., 1989) 
[61] 

23.1% starch 1% NaHC03 
No change in Milk 

fat or milk yield 
-- 

from 5.9-

6.2 

(Bougouin et al.,2018) 
[62] 

Concentrate challenge 
90 g/d Acid buff + 

180 g /d NaHC03 
 5.42 vs control (5.19) vs 

(5.26) 
 (Beya et al., 2007) [45] 

 

Direct fed microbials and yeast 

DFMs and yeast prevent lactate accumulation and allow better 

fiber digestion by improving the reducing conditions of rumen 

and fibrinolytic bacteria's stimulation. Conversion of lactate 
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to propionate is enhanced, and ruminal pH is stabilized [63] 

Nocek, and Kautz (2006) [64] showed in a study that three 

different organisms (Enterococcus faecium, Lactobacillus 

plantarum, Saccharomyces cerevisiae) administered at 105 

cfu/mL stabilized rumen acidity and improved digestion.  

 

Conclusions 

SARA's economic losses are relatively high (approximately 

Rs.20,000 per cow per lactation). So, it poses a significant 

threat to the dairy industry if not appropriately treated. 

Exogenous dietary buffers have been proven to help 

overcome acidosis, though the results are not consistent. The 

type of buffer, its dose, and the type of diet are the major 

factors affecting the buffers' efficiency. Yeast may be an 

effective alternative for bicarbonate buffers. The success of an 

effort in preventing SARA depends on the coordinated efforts 

between nutritionists and clinicians.  
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