E-ISSN: 2320-7078
P-ISSN: 2349-6800
www.entomoljournal.com
JEZS 2022; 10(2): 118-123
© 2022 JEZS
Received: 05-01-2022
Accepted: 13-02-2022

Hridisha Nandana Hazarika Research Scholar, Department of Zoology, Gauhati University, Guwahati, Assam, India

Bulbuli Khanikor
Assistant Professor, Department of Zoology, Gauhati University, Guwahati, Assam, India

Corresponding Author:

Bulbuli Khanikor
Assistant Professor, Department of Zoology, Gauhati University, Guwahati, Assam, India

Habitat wise distribution of ants with special reference to their host plants in Kholahat Reserve Forest, Assam, India

Hridisha Nandana Hazarika and Bulbuli Khanikor
DOI: https://doi.org/10.22271/j.ento.2022.v10.i2b. 8977

Abstract

Ants play a major role in the terrestrial ecosystem by conducting many key ecological functions. The present study was undertaken to investigate the habitatwise distribution of ants in Kholahat Reserve Forest, Assam. The ants were collected from forest habitat, grassland habitat and human habitat from September 2017 to August 2020. A total of 30 ant species belonging to 22 genera and 6 Subfamilies were recorded. The Shannon diversity indices indicated that the diversity was highest in forest habitat (3.32), followed by grassland habitat (3.29) and lowest in human habitat (3.04). The Sorenson's similarity index was highest between forest and grassland habitat while lowest between forest and human habitat. Six ant species were observed in teak and sal trees, while nine ant species were observed exclusively foraging on the soil during the daytime.

Keywords: Ants, Assam, Habitatwise distribution, Kholahat reserve forest

Introduction

Ants, the minute and often negligible little creature performed an interesting model system for ecological studies due to the role they played in the ecosystem. They are the bioindicators to determine the forest quality as they are associated with biogeochemical cycles of nature such as the nitrogen and carbon cycles. The soil ants are known as ecosystem engineers or soil engineers. They act as seed dispersal agents and help in pollination. Ants are very sensitive to the microclimatic conditions and habitat structure therefore, they are quickly responded to any environmental changes including land use disturbances, as well as their restoration efforts ${ }^{[1,2]}$. The ant diversity is associated with the availability of shelter, nesting sites, and foraging territory for food sources ${ }^{[3,4]}$. Changes in vegetation can effect on the availability of food resources and nesting sites for ants ${ }^{[5]}$. Apart from this, the plant community plays a vital role in ant diversity ${ }^{[6]}$. The mutualistic relationship between ants and plants is a widespread phenomenon as plants provide shelter and food for ants on the other hand ants provide protection to the plants from other herbivores ${ }^{[7]}$.
Assam is a biodiversity hotspot area, but very scanty work has been done on the habitatwise distribution of ants in Assam. In the present study Kholahat Reserve forest is chosen as the ideal study site due to the presence of various habitats such as forest habitat, grassland habitat and human habitat. Except for the diversity of avian species no record of studying any floral and faunal diversity. Therefore the present study was conducted to gather some knowledge about the habitatwise distribution of ants as well as their host plants.

Materials and Methods

Study Site: Kholahat Reserve Forest is located at a geographical location of $92^{\circ} 0^{\prime}-93^{\circ} 30^{\prime} \mathrm{E}$ longitude and $25^{\circ} 30^{\prime}-26^{\circ} 30^{\prime} \mathrm{N}$ latitude. This reserve forest is a tropical semi evergreen forest. The forest is mainly composed of three types of forest such as teak forest, sal forest and natural forest. Based on the visual observations the survey was carried out in three different habitats(a) forest habitat, (b) grassland habitat and (c) human habitat.

Survey Time: The survey was carried out twice in a month from 8 am to 2 pm in each study site from September 2017 to August 2020.

A sampling of Ants: For a collection of ants the standard protocol given by Agosti et al. ${ }^{[8]}$ and Bharti et al. ${ }^{[9]}$ was followed with modifications. Various sampling techniques such as beating vegetation, sugar baiting and hand collection were carried out for a sampling of ants. At each study site, one transect (200 m length and 5 m wide) was selected along which the samples were collected. Twenty sugar baits were placed in each transect with 10 m spacing between the baits. Hand collection was carried out within an area of 2.5 m on either side of the transect by searching for ants tree trunks, leaves, under the rocks. Ants foraging on the vegetation were collected by beating the vegetation of within an area of 2.5 m left and right of the transect.

Preservation of Ants: The collected ants were washed properly and preserved in 70% alcohol.

Identification of Ants: The collected ants were further taken to the laboratory, observed under a Leica stereo zoom microscope and identified based on identification keys ${ }^{[10,11]}$.

Data Analysis: Various diversity indices such as Shannon Diversity Index (H'), Simpson Index (D), Evenness Index were calculated using PAST software.
Sorenson's Similarity index was calculated by as follows-
Sorensen's Similarity Index, $\beta=2 \mathrm{C} /(\mathrm{S} 1+\mathrm{S} 2)$

Where,
S1 = Number of species present in the first habitat
S2= Number of species present in the second habitat $\mathrm{C}=$ Number of common species present in both habitat

Results

In the present study 30 ant species belonging to 22 genera and 6 Subfamilies were recorded from Kholahat Reserve Forest. 30 ant species were collected from forest habitat, 28 species were collected from grassland habitat and 22 species were collected from human habitat (Table 1). Various diversity indices were analyzed for the ant species collected from different habitats. The species diversity indices were different among the three different habitats. The Shannon Diversity Index was highest in forest habitat (3.32) followed by grassland habitat (3.29) and the lowest in human habitat (3.04) (Table 2). While evenness index was similar in grassland habitat and human habitat (0.95) and lowest in forest habitat (0.92) (Table 2). The ant abundance was highest in forest habitat followed by grassland habitat and lowest in human habitat (Fig. 1).
The Sorenson's Similarity Index was highest in Forest habitat and Grassland habitat (0.97) while Forest habitat and Human Habitat show the lowest (0.85) (Table 3). The Table 4 represents the collected ant species with some of their common host plants and collecting sites.

Table 1: Distribution of ants in different habitats of Kholahat Reserve Forest (+= Present, - = Absent)

Subfamilies	Species	Habitats		
		F	G	H
Dolichoderinae	Dolichoderus moggridgei (Forel, 1886)	+	+	+
	Dolichoderus thoracicus (Smith, 1860)	+	+	+
	Tapinoma melanocephalum (Fabricius, 1793)	+	+	+
	Technomyrmex albipes (Smith, 1861)	+	+	+
Dorylinae	Aenictus brevicornis (Mayr, 1879)	+		
Formicinae	Anoplolepis gracilipes (Smith, 1857)	+	+	+
	Camponotus compressus (Fabricius, 1787)	+	+	+
	Camponotus mitis (Smith, 1858)	+	+	+
	Camponotus sp	+	+	+
	Oecophylla smaragdina (Fabricius, 1775)	+	+	+
	Paratrechina longicornis (Latreille, 1802)	+	+	+
	Polyrhachis dives (Smith, 1857)	+	+	+
	Polyrhachis laevissima (Smith, 1858)	+	+	
Myrmicinae	Aphaenogaster feae (Emery, 1889)	+	+	+
	Cataulacus granulatus (Latreille, 1802)	+	+	
	Crematogaster anthracina (Smith, 1857)	+	+	
	Crematogaster rogenhoferi (Mayr, 1879)	+	+	+
	Meranoplus bicolor (Guerin-Meneville, 1844)	+	+	+
	Monomorium indicum (Forel, 1902)	+	+	+
	Monomorium pharaonis (Linnaeus, 1758)	+	+	+
	Pheidologeton diversus (Jerdon, 1851)	+	+	+
	Tetramorium bicarinatum (Nylander, 1846)	+	+	+
Ponerinae	Brachyponera luteipes (Mayr, 1862)	+	+	$+$
	Diacamma rugosum (Le Guillou, 1842)	+	+	+
	Diacamma scalpratum (Smith, 1858)	+	+	
	Leptogenys kitteli (Mayr, 1870)	+	+	
	Odontoponera denticulata (Smith, 1858)	+	+	$+$
	Pachycondyla sp	+	+	$+$
Pseudomyrmicinae	Tetraponera rufonigra (Jerdon, 1851)	+	+	
	Tetraponera sp	+	_	-

[^0]Table 2: Different diversity indices of ant species at different habitats of Kholahat Reserve Forest

Diversity Indices	F	G	\mathbf{H}
Shannon Diversity Index (H')	3.32	3.29	3.04
Simpson Index (D)	0.96	0.96	0.95
Evenness Index	0.92	0.95	0.95
Species Richness	30	28	22

($\mathrm{F}=$ Forest Habitat, $\mathrm{G}=$ Grassland Habitat, $\mathrm{H}=$ Human Habitat)

Fig 1: Ant Abundance across different habitats of Kholahat Reserve Forest
Table 3: Sorenson's Similarity index of ant species in different habitats

Habitat Pairs	Shared Species	Sorensons's Similarity Index
Forest-Grassland	28	0.97
Forest-Human Habitat	22	0.85
Grassland- Human Habitat	22	0.88

Table 4: Name of the ant species with collection sites

Species	Observed sites (Plants and Soil)	
	Plants	Soil
Dolichoderus moggridgei	Hibiscus rosasinensis	-
Dolichoderus thoracicus	Hibiscus rosasinensis	Present
Tapinoma melanocephalum	Hibiscus rosasinensis, Jasminum grandiflorum, Zizyphus jejuba	Present
Technomyrmex albipes	Jasminum grandiflorum, Moringa oleifera, Terminalia Bellirica	-
Aenictus brevicornis	-	Present
Anoplolepis gracilipes	Gmelina arborea, Moringa oleifera	Present
Camponotus compressus	Hibiscus rosasinensis, Magnifera indica, Moringa oleifera, Zizyphus jejuba, Jasminum grandiflorum, Clerodendrum infortunatum	Present
Camponotus mitis	Hibiscus rosasinensis, Jasminum grandiflorum	Present
Camponotus sp	Hibiscus rosasinensis, Magnifera indica, Moringa oleifera, Zizyphus jejuba, Jasminum grandiflorum	Present
Oecophylla smaragdina	Tectona grandis, Shorea robusta, Magnifera indica, Moringa oleifera, Tinospora cordifolia, Aegel marmelo, Gmelina arborea	Present
Paratrechina longicornis	Hibiscus rosasinensis, Jasminum grandiflorum, Ricinus communis, Tectona grandis, Shorea robusta, Magnifera indica, Moringa oleifera, Tinospora cordifolia, Aegel marmelos	Present
Polyrhachis dives	Ageratum conyzoides, Ricinus communis, Ipomoea sp	Present
Polyrhachis laevissima	-	Present
Aphaenogaster feae	Tectona grandis, Shorea robusta, Jasminum grandiflorum	Present
Cataulacus granulatus	-	Present
Crematogaster anthracina	Tectona grandis, Shorea robusta	Present
Crematogaster rogenhoferi	Tectona grandis, Shorea robusta, Magnifera indica	Present
Meranoplus bicolor	Jasminum grandiflorum, Clerodendrum infortunatum	Present
Monomorium indicum	Hibiscus rosasinensis, Jasminum grandiflorum, Ricinus communis, Clerodendrum infortunatum	-
Monomorium pharaonis	Clerodendrum infortunatum	Present
Pheidologeton diversus	-	Present
Tetramorium	Hibiscus rosasinensis, Jasminum grandiflorum, Ricinus communis	Present

bicarinatum			
Brachyponera luteipes	-		
Diacamma rugosum		-	Present
Diacamma scalpratum	Present		
Leptogenys kitteli	Gmelina arborea		
Odontoponera denticulata	-	-	
Pachycondyla sp	Tectona grandis, Shorea robusta, Terminalia arjuna	Present	
Tetraponera rufonigra	Tectona grandis, Shorea robusta	Present	-
Tetraponera sp		-	

Discussion

The findings of the present study showed that the distribution of ant species is influenced by their habitats. The highest ant diversity was recorded from forest habitat, followed by grassland habitat and the lowest in the human habitat. This finding was supported as well as contradicted by Chahvan and Pawar ${ }^{[12]}$ and Chanda ${ }^{[13]}$. They reported that forest habitat exhibit the highest ant diversity and grassland habitat exhibit the lowest ant diversity. Forest habitat shows the highest ant diversity as it comprises many trees that provide food and shelter to the ants. Sunil Kumar et al. ${ }^{[14]}$ reported that ant diversity increases with increasing number of trees and canopy cover. On the other hand, in the human habitat area lowest ant diversity was recorded. Human activities as well as man-made disturbance possess negative effect on the ant diversity. Anthropogenic disturbance causes elimination of less disturbance-adapted species and allowed the more tolerant species to survive ${ }^{[15]}$. The vegetation structure and rate of disturbance determine the ant diversity ${ }^{[16]}$.
Dolichoderus moggridgei and Dolichoderus thoracicus were common in all three habitats. Both species were observed in the flower, leaves and stems of Hibiscus rosasinensis trees. It was reported that they have mutualistic relationship with honeydew producing homopteran insects ${ }^{[17, ~ 18, ~ 19] . ~ T a p i n o m a ~}$ melanocephalum, was observed in the leaves Hibiscus rosasinensis, Jasminum grandiflorum, Zizyphus jejuba. The nest of these ants was difficult to detect ${ }^{[20]}$. It was reported that Hibiscus rosasinensis is host plant of Tapinoma melanocephalum ${ }^{[21]}$. Technomyrmex albipes was observed in the flower, leaves and stems of Jasminum grandiflorum, Moringa oleifera and Terminalia Bellirica. It was reported that they have a mutualistic relationship with aphids ${ }^{[22]}$. Aenictus brevicornis was confined only to the forest habitat. They were observed foraging on the soil. Anoplolepis gracilipes were common in all habitats and observed foraging on the Gmelina arborea, Moringa oleifera and soil. It was reported these invasive ants can survive in any disturbed habitats as well as they are capable of invading any natural habitats by eliminating the native ants ${ }^{[23]}$. Camponotus compressus, Camponotus mitis and Camponotus sp were reported from all three habitats in the present study. Camponotus compressus was observed foraging on the Hibiscus rosasinensis, Magnifera indica, Moringa oleifera, Zizyphus jejuba, Jasminum grandiflorum, Clerodendrum infortunatum and soil; Camponotus mitis was observed foraging on the Hibiscus rosasinensis, Jasminum grandiflorum and soil; Camponotus sp was observed foraging on the Hibiscus rosasinensis, Magnifera indica, Moringa oleifera, Zizyphus jejuba, Jasminum grandiflorum and soil. It was reported that Cajanus cajan, Lablab purpureus, Phaseolus sinensis, Vicia faba, Vigna mungo and Vigna radiata are common host plants of Camponotus compressus ${ }^{[24]}$. Oecophylla smaragdina was observed foraging on the Tectona grandis, Shorea robusta, Magnifera indica, Moringa
oleifera, Tinospora cordifolia, Aegel marmelo, Gmelina arborea as well as on the soil. It was reported that Magnifera indica is one of the common host plant of Oecophylla smaragdina ${ }^{[25]}$. Paratrechina longicornis was the most common ant species as they are found in all three habitats and interestingly, it was observed that they are found in almost all the observed trees as well as on the soil. They are associated with aphids ${ }^{[26]}$ and spread by human commerce ${ }^{[27]}$. Polyrhachis dives were reported from all three habitats and observed foraging on the soil, leaves as well as tree trunks. They make their nest between the leaves through the larval silk ${ }^{[28]}$. On the other hand, Polyrhachis laevissima was observed foraging exclusively on the soil in forest habitat and grassland habitat but absent in human habitat. Brachyponera luteipes, Diacamma rugosum, Odontoponera denticulata, Pachycondyla sp. were observed during foraging on the soil in all three habitats. While Diacamma scalpratum and Leptogenys kitteli were confined to forest habitat and grassland habitat. Diacamma rugosum and Diacamma scalpratum make their nest under the debris and stones. Tetraponera sp was only confined to forest habitat, while Tetraponera rufonigra was observed in forest habitats and grassland habitat. They were found foraging on Shorea robusta and Tectona grandis where they make their nest under the bark. This was in conformity with that of Sriyani and Fernando ${ }^{[29]}$, who reported that Tectona grandis is one of the host plants of Tetraponera rufonigra and they make their nest under the bark. Aphaenogaster feae were observed foraging on the soils, trunk and leaves of the plants of all three habitats. Their nests were observed under the soil and under the stones. Cataulacus granulatus was observed foraging on the floor of forest habitat and grassland habitat while absent in human habitats. Monomorium indicum was observed foraging on the Hibiscus rosasinensis, Jasminum grandiflorum, Ricinus communis, Clerodendrum infortunatum as well as on the soil. While Monomorium pharaonis were observed foraging on the Clerodendrum infortunatum as well as on the ground. It was reported that Lablab purpureus, Vicia faba and Vigna radiata are common host plants of Monomorium pharaonis ${ }^{[24]}$. They have a mutualistic relationship with aphids ${ }^{[30]}$. Pheidologeton diversus was common in all three habitats and they were observed foraging on the soil as a group. Meranoplus bicolor was found during foraging on the Jasminum grandiflorum, Clerodendrum infortunatum and soil in all the three habitats. It was reported that Cajanus cajan, Lablab purpureus, Phaseolus sinensis, Vicia faba, Vigna mungo and Vigna radiata are common host plants of Meranoplus bicolor ${ }^{[24]}$. They have a mutualistic relationship with hemipteran insects ${ }^{[31]}$. Crematogaster rogenhoferi was common in all three habitats and observed during foraging on the Tectona grandis, Shorea robusta, Magnifera indica and on the soil, while Crematogaster anthracina was confined to forest habitat and grassland habitat and observed during foraging on the Tectona grandis,

Shorea robusta and soil. Tetramorium bicarinatum was observed in all three habitats and observed in Hibiscus rosasinensis, Jasminum grandiflorum, Ricinus communis and
soil. It was reported that they are one of the commonest ants associated with coccids ${ }^{[32]}$.

Plate 1: A) Forest Habitat, B) Grassland Habitat, C) Human Habitat, D) Monomorium indicum observed in Clerodendrum infortunatum, E) Crematogaster rogenhoferi observed in Tectona grandis, F) Oecophylla smaragdina observed in Tinospora cordifolia, G) Polyrhachis dives observed in Ricinus communis, H) Nest of Odontoponera denticulata, I) Nest of Aphaenogaster feae

Conclusion

From the present study it can concluded that ant diversity vary among various habitats of the Kholahat Reserve Forest. Vegetation as well as host plants are the key factors that determine the variability in ant diversity.

Acknowledgement

Authors are very much thankful to the Head of the Department of Zoology, Gauhati University for providing the necessary facilities and support.

References

1. Anderson AN. The use of ant communities to evaluate change in Australian terrestrial ecosystems: a review and recipe. Proceedings of Ecological Society Australia. 1990;16:347-257.
2. Alonso LA, Agosti D. Biodiversity studies, monitoring, and ants: An overview. In Ants. Standard methods for measuring and monitoring biodiversity - Biological diversity hand book series. Washington \& London, 2000,
3.
4. Kaspari M. Testing resource-based models of patchiness in four neotropical litter ant assemblages. Oikos. 1996;76(3):443.
5. Blüthgen N, Feldhaar. Food and shelter: how resources influence ant ecology. In: Lach L, Parr C, Abbott K (eds) Ant ecology. Oxford Scholarship Online, 2010, 115-136.
6. Klimes P, Idigel C, Rimandai M, Fayle TM, Janda M, Weiblen GD, et al. Why are there more arboreal ant species in primary than in secondary tropical forests? J Anim. Ecol. 2012;81:1103-1112.
7. Boulton AM, Davies KF, Ward PS. Species richness, abundance, and composition of ground-dwelling ants in northern California grasslands: role of plants, soil, and grazing. Environmental entomology. 2015;34(1):96-104.
8. Bronstein JL, Alarcón R, Geber M. The evolution of plant-insect mutualisms. New Phytologist. 2006;172(3):412-428.
9. Agosti D, Majer JD, Alonso LE, Schultz TR. The ALL protocol. ANTS: Standard methods for measuring and
monitoring biodiversity. Smithsonian Institution Press, Washington DC, 2000, 204-206.
10. Bharti H, Bharti M, Pfeiffer M. Ants as bioindicators of ecosystem health in Shivalik Mountains of Himalayas assessment of species diversity and invasive species. Asian Myrmecology. 2016;8(1):1-15.
11. Bingham CT. Ants and cuckoo wasps. The Fauna of British India including Ceylon and Burma. Hymenoptera II. 1903.
12. Bolton B. Identification guide to the ant genera of the world. Harvard University Press, 1994.
13. Chavhan A, Pawar SS. Distribution and diversity of ant species (Hymenoptera: Formicidae) in and around Amravati City of Maharashtra, India. World journal of Zoology. 2011;6(4):395-400.
14. Chanda A. A study on ants (Hymenoptera: Formicidae) of Medinipur, West Bengal, India. International Journal of Entomology Research. 2017;2(5):1-4.
15. Sonune BV, Chavan RJ. Distribution and diversity of ants (Hymenoptera: Formicidae) around Gautala Autramghat Sanctuary, Aurangabad Maharashtra, India. Journal of Entomology and Zoological Studies. 2016;4:361-364.
16. Mouillot D, Graham NA, Villéger S, Mason NW, Bellwood DR. A functional approach reveals community responses to disturbances. Trends Ecol Evol. 2012;28(3):167-177.
17. Sunil Kumar M, Srihari KT, Nair P, Varghese T, Gadagkar R. Ant species richness at selected localities of Bangalore. Insect Environment. 1997;3(1):3-5.
18. Khoo KC, Chung GF. Use of the black cocoa ant to control mirid damage in cocoa. Planter (Malasia). 1989;65(762):370-383.
19. Way MJ. Studies of the life history and ecology of the ant Oecophylla longinoda Latreille. Bulletin of Entomological Research. 1954; 45(1):93-112.
20. Way MJ. Mutualism between ants and honeydewproducing Homoptera. Annual review of entomology. 1963;8(1):307-344.
21. Harada AY. Ant pests of the Tapinomini tribe. Applied Myrmecology: A World Perspective, 1920, 298-315.
22. Lokeshwari D, Kumar NK, Manjunatha H. Record of ants (Hymenoptera: Formicidae) tending aphids with special reference to the melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Pest Management in Horticultural Ecosystems. 2015;21(1):31-37.
23. Yamane S, Tsuda K, Harada Y. The ants of the mainland of Kagoshima, 1994.
24. Human KG, Gordon DM. Behavioral interactions of the invasive Argentine ant with native ant species. Insectes Sociaux. 1999;46(2):159-163.
25. Rakhshan R, Ahmad ME. Study of mutualistic ants associated with Aphis craccivora (Hemiptera: Aphididae) on various host plants of family Fabaceae in Northeast Bihar (India). European Scientific Journal. 2015;11(18):317-327.
26. Rajagopal T, Singam P, Kulandaivel S, Selvarani S, Sevarkodiyone S, Ponmanickam P. Survey of red weaver ants (Oecophylla smaragdina) and their host plants in urban and rural habitats of Madurai District, Tamil Nadu, India. Journal of Entomology and Zoology Studies. 2019;7(1):938-943.
27. Hölldobler B, Wilson EO. The ants. Harvard University Press, 1990.
28. Wetterer JK. Worldwide spread of the longhorn crazy ant, Paratrechina longicornis (Hymenoptera: Formicidae). Myrmecological News. 2008;11:137-149.
29. Wasmann SJ. Beobachtungen über Polyrhachis dives auf Java, die ihre Larven zum Spinnen der Nester benutzt. Notes from the Leyden Museum. 1905;25(3):133-140.
30. Sriyani DR, Fernando KSSD. Host tree species, nest information and the management of an outbreak of medically important Tetraponera rufonigra (Jerdon, 1851) (Hymenoptera: Formicidae: Pseudomyrmecinae) using citronella oil or kerosene. Кавказский энтомологический бюллетень. 2017;13(1):93-98.
31. Rasheed SB, Yar A, Zaidi F, Jamal Q. The Diversity of Ants (Hymenoptera: Formicidae) in District Charsadda, Khyber Pakhtunkhwa: New Reports from Pakistan. Pakistan Journal of Zoology. 2020;52(4):1363-1370.
32. Burikam I, Kantha D. Mutualistic relationships between the shield ant, Meranoplus bicolor (Guérin-Méneville) (Hymenoptera: Formicidae) and honeydew-producing hemipterans in guava plantation. Sociobiology. 2014;61(3):286-292.
33. Mann WM. Ant guests from Fiji and the British Solomon islands. Annals of the Entomological Society of America. 1920;13(1):60-69.

[^0]: ($\mathrm{F}=$ Forest Habitat, $\mathrm{G}=$ Grassland Habitat, $\mathrm{H}=$ Human Habitat)

