

E-ISSN: 2320-7078 P-ISSN: 2349-6800 www.entomoljournal.com

JEZS 2022; 10(2): 144-151 © 2022 JEZS Received: 23-01-2022 Accepted: 26-02-2022

Saka MG

Department of Forestry and Wildlife Management, Faculty of Agriculture, Modibbo Adama University, Yola, Nigeria

Mamman GS

Department of Forestry and Wildlife Management, Faculty of Agriculture, Modibbo Adama University, Yola, Nigeria

Adedotun A

Department of Forestry and Wildlife Management, Faculty of Agriculture, Modibbo Adama University, Yola, Nigeria

Corresponding Author: Saka MG Department of Forestry and Wildlife Management, Faculty of Agriculture, Modibbo Adama University, Yola, Nigeria

Journal of Entomology and Zoology Studies

Available online at www.entomoljournal.com

Comparison of Shannon-Weinner's and Simpson's indices for estimating birds species diversity in Bodel forest of Gashaka Gumti national park, Nigeria

Saka MG, Mamman GS and Adedotun A

DOI: https://doi.org/10.22271/j.ento.2022.v10.i2b.8983

Abstract

The decline in bird's species population and their diversity posed a great challenge to the conservators and the ornithologist. Shannon-Weinner's and Simpson Indies were used to evaluate the bird's species diversity in Bodel forest reserve of Gashaka Gumti National Park. A systematic sampling method was adopted, in which three (3) transects of 1 km in length were laid at an interval of 200 m apart in the study site. Species of birds sighted along the transect were observed and recorded. The species evenness was determined using the evenness equation E = H'/Ln(S). The results on bird's species distribution revealed a total of 788 birds, belonging to 73 species and 26 families in the study area. Lunchura cucullata has the highest frequency of 82 birds (10.4%), this was followed by *Ploceus cuculatus* with a frequency of 50 birds (6.3%), while the least frequency of 1(0.1%) was recorded for Eliminilongi cauda. The two diversity indices revealed that bird species in the Bodel forest reserve of Gashaka Gumti National park are highly diverse. Simpson's index gave a value of 0.97, while Shannon-Weinner's index gave a value of 3.79 of species diversity in the Bode forest reserve. T-test conducted shows that the two indices are significant in measuring bird's species diversity, but, Shannon-Weinner's index is mostly preferred due to its lower mean standard error (0.005). The study has shown that the Bodel Forest reserve of Gashaka Gumti National Park is capable of sustaining a large population of bird species, if human interference is curtailed. Since bird's are an integral part of the ecosystem that occupy many tropic levels in a food chain ranging from producers to consumers, there occurrence should be protected and conserved as they are of helpful in environmental health indicator, pollinators, seed dispersal and as an agent of pest control.

Keywords: Species diversity, population, occurrence, protected, tropic level

1. Introduction

Understanding the processes that contribute to the distribution and diversity of birds species is still a challenge in ecological studies. Since there are many mechanisms and factors that may affect biological diversity ^[1]. This diversity is inserted in a dynamic and complex ecosystem, where factors such as predation, intra and interspecific interactions, competition for food and environmental and spatial factors may affect its distribution and permanence.

The rapid increase in the human population has adversely affected diversity around the globe ^[2]. The negative effects of this increase include pollution, climate change, deforestation, habitat loss, and invasion of exotic species ^[3, 4, 5].

The birds are good environment indicators and help to identify priority areas for conservation ^[6]. Metrics such as species currently inhabiting any specific area, their historic distribution records, and the levels of threat to the species aid in protection efforts ^[7, 8]. These threats are leading species toward extinction ^[9]. So we have designed a project to know the diversity and distribution of birds in different habitats.

Birds are organisms with high dispersal ability, that participate in many biological interactions and are usually highly faithful to specific habitats ^[10, 11]. In addition, birds make up the most diverse group of terrestrial vertebrates, comprising species that are excellent environmental indicators that respond quickly to subtle changes in the environment ^[12]. Thus, understanding the biotic and abiotic mechanisms that affect the distribution of bird species may play a key role in the discussion of the processes that contribute to the establishment and diversity of species. The Climate, particularly the dry and rainy seasons clearly affects the abundance of food resources, where rainy seasons have greater environmental complexity and higher supply

and availability of resources ^[13, 14]. Climate is a key environmental variable for the occurrence and abundance of birds in the landscape, in both time and/or space ^[10, 11]. Also, variables such as humidity, solar radiation and air temperature affect the metabolic rate of avian species, producing different levels of physiological responses ^[28], thus influencing the egg hatching rates in birds, where high temperatures associated with low humidity ranges can lead to reduced reproductive success ^[16]. Birds help in the stability of an ecosystem by dispersing seeds and pollination of plants.

The change in climatic conditions, also puts many bird species at risk of extinction, even those currently considered safe ^[17]. With a global mean surface temperature increase of 1-2 °C above pre-industrial levels, many unique and threatened ecological systems will be at risk and numerous species will face extinction ^[18, 19].

Precipitation, along with temperature, is also especially likely to influence the behaviour of migratory birds. It is expected to affect their decision to depart for migration indirectly by acting on food availability and birds' consequent ability to build up energy reserves. Drought in critical stopover areas for migratory birds affects their ability to refuel on water and prey before crossing barriers such as deserts ^[20]. The focus of this study is to compare the two most commonly used diversity indices with the aim of chosen the best that can be used to describe bird's species diversity in Bodel Forest Reserve of Gashaka Gumti National Park.

2. Materials and Methods

2.1 Study Area

Gashaka Gumti National Park is the largest and most diverse

park in Nigeria, covering an area of approximately 6,671sq. Km, and is split between Adamawa and Taraba States. It's located in the Northeast of Nigeria between latitudes 6⁰ 55' and 8º 05'N, and between longitudes 11º11' and 12º13'E, with the Federal Republic of Cameroon on the eastern border (Figure 1). The park's name was derived from two of the region's oldest and most historic settlements: Gashaka village in Taraba State, and Gumti village in Adamawa State. Gashaka Gumti National Park was created (along with other seven national parks) by Decree No. 36 of August, 1991, and repealed by Decree N0. 46 of 1999 (now Act) by the merging of Gashaka Game reserve with Gumti Game Reserve^[21]. The pattern of climatic zones in the study area is distorted by the influence exerted by highland areas that are located throughout the region and beyond ^[22]. This results in increased rainfall on the crests and western flanks of these mountain ranges and low rain shadow to the east. Annual rainfall within the park ranges from 1200mm in the north to 3000mm in the southern region. The wet season is normally experienced from April to November, and the dry season is from December to March. In the December period, there is always a low temperature at night, and ranges from 10-15 °C, while, in March and April, the temperature is as high as 40° per daytime. Temperature can be much cooler at higher altitudes and during the harmattan period that occurs from November to March^[22]. The region can be divided into two major physiographic provinces. The plains of the Benue valley, which lie to and north of the region, predominantly 300m above sea level and the Adamawa Highlandsare situated to the south and East of the park.

Fig 1: Map of Gashaka Gumti National Park Showing the Study Area

2.2 Method of data collection

The data for this study were collected from September to December 2021. Systematic sampling technique was adopted for data collection. Three (3) lines of transect T1, T2 and T3 of one (1) km in length were laid at an interval of 200 m

across the study site. All species of bird sighted along each transect with the aid of binoculars and naked eyes were identified and recorded. Two to three minutes of keen observation was usually done on a line transects, which allowed the birds to to acclimate to human presence. Also,

Journal of Entomology and Zoology Studies

physical features like the colour of the head, colour of the neck, the colour of the wings and colour of the tail were also observed. The counts were done as early as 6.00 am, because birds are warm blooded and are active almost all the time. Each line transects was visited for five (5) times during the study period. Information on climatic factors of the study area was collected, and this was used for predicting the population of the bird species in the study area.

2.3 Data Analysis

The data obtained was presented in the form of a table, frequencies and percentages. Shannon diversity index was used to estimate bird's species diversity in the study.

2.4 Estimation of Diversity Indices and Equitability

The diversity Index was estimated using Shannon diversity index (H') (Equation 1) and Simpson's diversity index (Equation 2), while, species equitability (evenness) (Equation 3) was estimated using Pielou's measure of species evenness.

1.	$H' = -\Sigma P_i Ln P_i$	Equation (1)
2.	$D = 1 - (D = 1 - \left[\frac{n(n-1)}{N(N-1)}\right]$	Equation (2)
3.	E = H'/Ln(S)	Equation (3)

2.5 Comparison of the Species Diversity Indices

Student t-test was used to compare the significant effect of the

http://www.entomoljournal.com

two diversity indices on the bird's population, and is of the form:

$$t = \frac{\overline{Sh} - \overline{Sm}}{\sqrt{\frac{Sp}{h,m\left(\frac{1}{nsh} + \frac{1}{nsm}\right)}}}$$

Where

 $\frac{t = \text{student } t \text{-test}}{Sh} = \text{mean of number of Shannon}$

 \overline{Sm} = mean of number of Simpson's

 $Sp_{h,m}$ = pooled variance nsm, nsh = number of observation

3. Results and Discussion

3.1 Birds Species Distribution in Bodel Forest of Gashaka Gumti National Park

A total of 788 birds, belonging to 73 species and 26 families were identified in the study area. *Lunchura cucullata* has the highest frequency of 82 birds (10.41%), this was followed by *Ploceus cuculatus* with a frequency of 50 birds (6.35%), while the least frequency of 1(0.13%) was recorded for *Eliminilongi cauda* (Table 1).

Table 1: Distribution of Birds Species in Bodel Forest, Gashaka Gumti National Park

S/No.	Species	Frequency	Percentage (%)
1	Acrocephalus rufescens	3	0.380711
2	Agapornus pullarius	11	1.395939
3	Antichromus minutes	5	0.634518
4	Apalis nigriceps	7	0.888325
5	Apus horus	20	2.538071
6	Arthreptes rectirostris	14	1.77665
7	Ati capilla	8	1.015228
8	Baeopogon indicator	2	0.253807
9	Bubulus ibis	3	0.380711
10	Buteo buteo	2	0.253807
11	Centropus senegalensis	3	0.380711
12	Chalcomitra rubessers	23	2.918782
13	Cinnyris cupreus	11	1.395939
14	Cinnyris minullus	17	2.15736
15	Cinnyris venustus	14	1.77665
16	Circus cyaneus	3	0.380711
17	Cocracias abyssinicus	7	0.888325
18	Corvinella corvina	5	0.634518
19	Crinifer zonurus	21	2.664975
20	Cypsiurus parvus	2	0.253807
21	Delichon urbica	3	0.380711
22	Dicrurus adsimilis	5	0.634518
23	Egrets ardesiaca	2	0.253807
24	Egretta alba	40	5.076142
25	Elanus caerules	11	1.395939
26	Eliminilongi cauda	1	0.126904
27	Elminia albventris	4	0.507614
28	Estrilda melpoda	12	1.522843
29	Euplectes hartlaubi	4	0.507614
30	Euplectes macrourus	11	1.395939
31	Ficedula albiventris	3	0.380711
32	Francolinus squamatus	2	0.253807
33	Gypohierax angolenisis	11	1.395939
34	Halycyon senegalensis	4	0.507614
35	Hedydipna platura	11	1.395939
36	Indicator indicator	3	0.380711
37	Kaupifalco monogrammicus	5	0.634518

38	Lagonosticta senegala	5	0.634518
39	Lamprotornis choloropterus	4	0.507614
40	Lamprotornis purpures	2	0.253807
41	Laniarus aethiopicus	2	0.253807
42	Laniarus poensis	4	0.507614
43	Lanius minor	3	0.380711
44	Logonisticta rufopicta	7	0.888325
45	Lunchura cucullata	82	10.40609
46	Malimbus erythrogaster	3	0.380711
47	Malimbus malimbicus	8	1.015228
48	Malimbus rubricollis	3	0.380711
49	Megacerlye maxima	10	1.269036
50	Melaenornis edolioides	3	0.380711
51	Milvus migrans	8	1.015228
52	Muscicapa adusta	2	0.253807
53	Musophaga rossae	3	0.380711
54	Numida melagris	8	1.015228
55	Oxylophus jacobinus	25	3.172589
56	Phoeniculus purpureus	2	0.253807
57	Phyllastreplus poenensis	10	1.269036
58	Ploceus cuculatus	50	6.345178
59	Ploceus luteolus	20	2.538071
60	Poicephalus senegalus	5	0.634518
61	Prodotiscus regulus	11	1.395939
62	Psalidoprocne nitens	8	1.015228
63	Pseudochelidon eurystomina	40	5.076142
64	Pycnontus barbatus	48	6.091371
65	Sagittarius serpentarius	3	0.380711
66	Stephanoaetus coronatus	2	0.253807
67	Streptopelia decipens	3	0.380711
68	Streptopelia semitorquata	17	2.15736
69	Streptopelia senegulensis	11	1.395939
70	Streptopelia vinacea	20	2.538071
71	Sylvia borin	11	1.395939
72	Treron calva	15	1.903553
73	Uraeginhus bengalus	17	2.15736
I	Total	788	100

3.2 Birds Species Richness, Diversity, and Evenness in Bodel Forest Reserve, GGNP

The high population distribution of bird's species recorded in the study area (Figure 2, Appendix I) indicates that the savannah woodlands of GGNP are very rich in plant species and a favourable climatic conditions, attracting diverse numbers of bird species types for conservation.

In terms of bird's species diversity in the study area, Shannon Weinner and Simpson indices (Figure 3) gave a value of 3.79 and 0.97 respectively, while, the value of the evenness of birds species (Figure 4) gave a value of 1.79. The Shannon Weinner index according to ^[24] bird's conspicuousness can vary with the observer, weather, and time of the day, Hence has the high diversity and abundance of bird species types as a result of good breeding sites, Factors that promoted the high diversity include a wide variety of resources, high productivity and moderate levels of predation ^[25].

One of the most important factors observed in Bodel forest was the moderate levels of disturbances from outside the community, and the presence of arboretum, which influenced the high population of members of some families of bird species like Estrildidae, Nectariniidae, and Ploceidae. This may be due to the different plant species precisely their fruits, seeds, leaves and grasses, some insects and maggots in the arboretum, which serves as a suitable feeding, nesting and breeding habitats for the birds. This result is in line with ^[26] who reported about 910 species of birds in 90 families in his study. Also, this study agrees with the findings of ^[27] in their study of the diversity of bird species and conservation carried out in two wetlands of Upper Benue River Basin (UBRB) State, Adamawa, Nigeria in which 53 and 55 bird families, 163 and 160 species were recorded in Kiri and Gyawana Lake respectively.

Fig 3: Bird's Species Diversity Indices (1 - Shannon-Weinner's; 2 - Index; Simpson's Index)

3.3 Comparison of Shannon-Weinner's and Simpson Diversity Indices

Presented in Table 2 is the t-test result for comparing the Shannon-Weinner's and Simpson index as a measure of bird's species diversity in Bodel Forest Reserve of GGNP. The result revealed that the Shannon-Weinner index had a means

of 0.051and a standard deviation of 0.043 respectively, while, Simpson's had a mean and standard of value 281.04 and 882.19 respectively. Also, the test further shows a high positive correlation coefficient (0.82) and a significant relationship (p<0.005) between the two indices.

Fable 2: T-test for	comparing Bird	s Species Diversity
---------------------	----------------	---------------------

Diversity Indices	Mean	Ν	Std. Deviation	Std. Error Mean	Correlation	Sig.
Shannon-Weinner's	0.051	73	0.0433	0.0051	0.822	0.0003
Simpson	281.04	73	882.1899	103.252		

4. Conclusion

The study has shown thathe t Bodel Forest reserve of Gashaka Gumti National Park is capable of sustaining a large population of bird species, if human interference can be curtailed. The two indices compared for the assessment of bird's species diversity are good in measuring diversity in the study area, but the Shannon-Weinner index is most prefer duethe to lower value of mean standard error as compared to Simpson's index. Since biran d's are integral part of the ecosystem that occupy many tropic levels in a food chain ranging from producers to theirmers, there occurrence should be proconservednd conserve as they areofff helpful in environmental health indicator, pollinators, seed dispersal and aan s agent of pest control.

5. References

- 1. Püttker T. de Amda Bueno A, Prado PI, Pardini R. Ecological filtering or random extinction? Beta-diversity patterns and the importance of niche-based and neutral processes following habitat loss. Oikos. 2015;124:206-215.
- 2. Blom A, Van Zalinge R, Mbea E. Human impact on wildlife populations within a protected Central African forest. African Journal of Ecology. 2004;42:23e31.
- 3. Bierwagen BG. Connectivity in urbanizing landscapes: The importance of habit configuration, urban area size, and dispersal. Urban Ecosystems. 2007;10:29-42.
- 4. Mazumder MK. Diversity, habitat preferences, and conservation of the primates of Southern Assam, India: The story of a primate paradise. Journal of Asia-Pacific Biodiversity. 2014;7:347-354.
- 5. Scanes CG. Human activity and habitat loss: destruction, fragmentation, and degradation. In: Animals and Human Society. Elsevier, 2018, 451-482.
- Galgani F, Fleet D, Van Franeker J. Marine Strategy Framework directive-Task Group 10 Report marine litter do not cause harm to the coastal and marine environment. Official Publications of the European Communities, 2010.
- 7. Myers N. The biodiversity challenge: expanded hot-spots analysis. Environmentalist. 1990;10:243-256.
- 8. Myers JH, Simberloff D, Kuris AM. Eradication revisited: dealing with exotic species. Trends in Ecology and Evolution. 2000;15:316-320.
- 9. Altaf M. Assessment of Avian and Mammalian Diversity at Selected Sites along river Chenab. Lahore-Pakistan: the University of Veterinary and Animal Sciences, 2016.
- Santos MPD. As comunidades de aves em duas fisionomias da vegetação de Caatinga no estado do Piaui, Brasil. 2004;12:113-123.
- 11. Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO, Lovejoy TE Dispersal of Amazonian birds in continuous

and fragmented forest. Ecol Lett. 2012;10:219-229.

- 12. Peter MB. Evolutionary Ecology of Birds: Life Histories, Mating Systems and Extinction. Oxford University Press. Oxford University Press, 2002.
- 13. Develey PF, Peres CA. Resource seasonality and the structure of mixed species bird flocks in a coastal Atlantic forest of southeastern Brazil. J Trop Ecol. 2000;16:33-53.
- 14. Freemark KE, Merriam HG. Importance of area and habitat heterogeneity to bird assemblages in temperate forest fragments. Biological Conservation. 1986;36:115-141.
- 15. Saravanabavan V, Abeesh P. Environmental health status of fishermen in Mahe district. Int. J Geogr Geol. Environ 2020;2(2):95-102.
- 16. Boleli IC, Queiroz SA. Effects of Incubation Temperature and Relative Humidity on Embryonic Development in Eggs of Red-Winged Tinamou (*Rhynchotus rufescens*). International Journal of Poultry Science. 2012;11:517-523.
- 17. Birdlife. State of the world's birds 2004. A report, 2004a.
- 18. Noble I, Parikh J, Watson R, Howarth R, Klein RJT, Abdelkader A, *et al.* Climate Change. In: K. Chopra, R. Leemans, P. Kumar and H. Simons (Eds) Ecosystems and Human Well-Being: Policy Responses. Findings of the Responses Working Group of the Millennium Ecosystem Assessment. Island Press, Washington, DC, 2005, 3.
- Van Vliet A, Leemans R. Rapid species' responses to changes in climate require stringent climate protection targets. In: Schellnhuber H. J., Cramer W., Nakícénovic N., Wigley T., & Yohe G. (Eds) Avoiding Dangerous Climate Change. Cambridge University Press, Cambridge, 2006, 135.
- Bairlein F, Hüppop O Migratory fuelling and global climate change. In: Møller, A., Berthold, P. & Fiedler, W (Eds) Birds and Climate Change, Advances in Ecological Research 35.. Elsevier Academic Press, 2004, 33p.
- 21. Magurba BL. National Parks and their Benefit to Local Communities in Nigeria, 2002.
- 22. Pepeh KY, Nicholas A. A Survey of African Wild Dog (*Lycoan pictus*) in Gashaka Gumti National Park, Nigeria. A report for GGNP, National Park Service, Nigerian Conservation Foundation and WWF. UK, 2002, 1-47.
- 23. Warren Y. Olive Baboon (*Papio cynocephalus Anubis*): Behaviour, Ecology and Human Conflict in Gashaka-Gumti National Park, Nigeria. Ph.D Thesis submitted to the School of Human and Life Sciences, Roehampton University, London, UK, 2004.
- 24. Bibby CJ, Burgress ND, Hill D. Birds Census Techniques 2nd Edition London, Academic Press, 2000, 24-41.
- 25. Miller JR, Hobbs RJ. Conservation where people live and

work. Conservation Biology. 2002;16:330-337.

- 26. Ezealor AU. Important Bird areas in Africa and associated Island. Report by Nigeria Conservation Foundation (NCF) Lagos, Nigeria, 2001, 675-688.
- 27. David F, Parmelee A. Antartic Birds published by fish

and wildlife service USA, 2013, 166-176.

28. Porter WP, Gates DM. Thermodynamic Equilibria of Animals with Environment. Ecol Monograph. 1969;39:227-244.

Appendix I: Species Frequency	, Simpson's and Shannon-Weiner's Diversity Indices
-------------------------------	--

S/No.	Species	Frequency	Pi	Lnpi	Shannon-Weinner's [PiLnPi]	Simpson's [n(n -1)]
1	Acrocephalus rufescens	3	0.003807	-5.57089	0.021209	6
2	Agapornus pullarius	11	0.013959	-4.2716	0.059629	110
3	Antichromus minutes	5	0.006345	-5.06006	0.032107	20
4	Apalis nigriceps	7	0.008883	-4.72359	0.041961	42
5	Apus horus	20	0.025381	-3.67377	0.093243	380
6	Arthreptes rectirostris	14	0.017766	-4.03044	0.071607	182
7	Ati capilla	8	0.010152	-4.59006	0.0466	56
8	Baeopogon indicator	2	0.002538	-5.97635	0.015168	2
9	Bubulus ibis	3	0.003807	-5.57089	0.021209	6
10	Buteo buteo	2	0.002538	-5.97635	0.015168	2
11	Centropus senegalensis	3	0.003807	-5.57089	0.021209	6
12	Chalcomitra rubessers	23	0.029188	-3.534	0.10315	506
13	Cinnyris cupreus	11	0.013959	-4.2716	0.059629	110
14	Cinnyris minullus	17	0.021574	-3.83628	0.082762	272
15	Cinnyris venustus	14	0.017766	-4.03044	0.071607	182
16	Circus cyaneus	3	0.003807	-5.57089	0.021209	6
17	Cocracias abyssinicus	7	0.008883	-4.72359	0.041961	42
18	Corvinella corvina	5	0.006345	-5.06006	0.032107	20
19	Crinifer zonurus	21	0.02665	-3.62498	0.096605	420
20	Cypsiurus parvus	2	0.002538	-5.97635	0.015168	2
21	Delichon urbica	3	0.003807	-5.57089	0.021209	6
22	Dicrurus adsimilis	5	0.006345	-5.06006	0.032107	20
23	Egrets ardesiaca	2	0.002538	-5.97635	0.015168	2
24	Egretta alba	40	0.050761	-2.98062	0.1513	1560
25	Elanus caerules	11	0.013959	-4.2716	0.059629	110
26	Eliminilongi cauda	1	0.001269	-6.6695	0.008464	0
27	Elminia albventris	4	0.005076	-5.2832	0.026818	12
28	Estrilda melpoda	12	0.015228	-4.18459	0.063725	132
29	Euplectes hartlaubi	4	0.005076	-5.2832	0.026818	12
30	Euplectes macrourus	11	0.013959	-4.2716	0.059629	110
31	Ficedula albiventris	3	0.003807	-5.57089	0.021209	6
32	Francolinus squamatus	2	0.002538	-5.97635	0.015168	2
33	Gypohierax angolenisis	11	0.013959	-4.2/16	0.059629	110
34	Halycyon senegalensis	4	0.005076	-5.2832	0.026818	12
35	Hedydipna platura	11	0.013959	-4.2/16	0.059629	110
30	Indicator indicator	3	0.003807	-5.5/089	0.021209	6
3/	Kaupifalco monogrammicus	5	0.006345	-5.06006	0.032107	20
38	Lagonosticta senegala	5	0.006345	-5.06006	0.032107	20
39	Lamprotornis choloropterus	4	0.005076	-5.2832	0.026818	12
40	Lamprotornis purpures	2	0.002538	-5.97635	0.015168	2
41	Laniarus aethiopicus	2	0.002538	-5.9/635	0.015168	12
42	Laniarus poensis	4	0.003076	-3.2832	0.020818	12
43	Lanius minor	3	0.003807	-5.57089	0.021209	0
44	Logonisticta rujopicta	/	0.008883	-4.72559	0.041961	42
45	Lunchura cucultata	82	0.104061	-2.20278	0.235467	60042
40	Malimbus erythrogaster	3	0.003807	-3.37089	0.021209	56
47	Malimbus multimolicus	0	0.010132	-4.39000	0.0400	50
40	Mailmous rubricollis Magacarba maxima	10	0.003807	-3.37089	0.055418	0
50	Melganornis adolioidas	3	0.01207	-5 57089	0.021209	50
51	Milius migrans	9	0.003807	-5.57089	0.021209	56
52	Muscicapa adusta	2	0.002538	-5 97635	0.015168	2
53	Musonhaga rossae	3	0.003807	-5.57089	0.021209	6
54	Numida melaoris	8	0.010152	-4.59006	0.0466	56
55	Oxylophus iacobinus	25	0.031726	-3.45062	0.109474	600
56	Phoeniculus purpureus	2	0.002538	-5.97635	0.015168	2
57	Phyllastreplus poenensis	10	0.01269	-4.36691	0.055418	90
58	Ploceus cuculatus	50	0.063452	-2.75748	0.174967	2450
59	Ploceus luteolus	20	0.025381	-3.67377	0.093243	380

Journal of Entomology and Zoology Studies

http://www.entomoljournal.com

60	Poicephalus senegalus	5	0.006345	-5.06006	0.032107	20
61	Prodotiscus regulus	11	0.013959	-4.2716	0.059629	110
62	Psalidoprocne nitens	8	0.010152	-4.59006	0.0466	56
63	Pseudochelidon eurystomina	40	0.050761	-2.98062	0.1513	1560
64	Pycnontus barbatus	48	0.060914	-2.7983	0.170455	2256
65	Sagittarius serpentarius	3	0.003807	-5.57089	0.021209	6
66	Stephanoaetus coronatus	2	0.002538	-5.97635	0.015168	2
67	Streptopelia decipens	3	0.003807	-5.57089	0.021209	6
68	Streptopelia semitorquata	17	0.021574	-3.83628	0.082762	272
69	Streptopelia senegulensis	11	0.013959	-4.2716	0.059629	110
70	Streptopelia vinacea	20	0.025381	-3.67377	0.093243	380
71	Sylvia borin	11	0.013959	-4.2716	0.059629	110
72	Treron calva	15	0.019036	-3.96145	0.075408	210
73	Uraeginhus bengalus	17	0.021574	-3.83628	0.082762	272
	Total	788			3.793263	20516