Assessment of mosquito mesh sizes available in Enugu metropolis

Adaobi J Dieke, Eze E Ajaegbu, Oluchi A Olofin, Juliet O Nwigwe, Adaora L Onuora, Ijeoma O Okolo, Benneth M Okike, Chinenyi A Nwobodo, Ethel E Adimora, Ukachukwu C Ezech, Jane I Ugochukwu, Abdulrasheed M Bello, Adeniran J Ikuesan and Blessing C Nwaso

DOI: https://doi.org/10.22271/j.ento.2022.v10.i4a.9021

Abstract

Introduction: The mosquito-vector is known to be associated with a number of parasitic and arboviruses that have been known to cause human diseases. Control of mosquito-borne diseases depends heavily on our capacity to regulate the vector that causes these diseases.

Method: A cross-sectional study was carried out on 240 different houses within Enugu metropolis between October and December 2021. The mesh sizes of windows and door nets were measured using the meter rule in mm.

Result: A total number of 240 houses were covered by mesh sizes ranging between 1.0 and 4.0 mm, and the statistical analysis revealed a higher percentage of 56% for mesh sizes ranging between 1.6 mm and 4.0 mm, a moderate percentage of 31% for mesh sizes ranging between 1.2-1.5 mm, and the lowest percentage of 13% for mesh sizes ranging between 1.2-1.5 mm.

Conclusion: This finding from this study revealed a need to improve community knowledge and perception of the various mesh sizes available and the standard mosquito mesh size required to reduce threats posed by mosquito vectors and preclude the spread of diseases caused by mosquitoes. Such awareness will increase the willingness of householders to implement other approaches and modifications, which include obstructing portals of entry for mosquitoes and shutting doors and windows at night.

Keywords: Mosquitoes, vector, mesh sizes, disease, house, door net

Introduction

Malaria remains a public health challenge that is endemic in some tropical countries [1]. Malaria is the leading public health burden in Nigeria, causing over 33% of all childhood deaths among children under the age of five [2] and [3]. This occurs primarily because of the bites from numerous kinds of the Anopheles mosquito [4]. The prevalence of malaria in the southern eastern part of Nigeria, for example, in Abia State, has been reported to be on the rise, from 61.4% in 1999 to 83.0% in 2003 [5]. Mosquitoes that transmit malaria prefer to feed indoors, particularly those found in Africa, such as An. gambiae (sensu stricto) and An. funestus (s.s.) [6] as well as the Asian vector An. stephensi (s.s.), whereas others, such as An. arabiensis, can feed both indoors and outdoors. Minimizing the risk of exposure from human-mosquito vector contact is paramount to minimizing the burden of malaria in endemic areas [7]. This has been accomplished through the utilization of bed nets treated with insecticide (ITNs), and this physically shields people sleeping inside the net. Recently, the use of mosquito nets and mosquito repellents is considered the most popular means of reducing human-mosquito vector contact [8]. Over the years, mosquito nets have been used to shield people against bloodsucking insects at night and other creatures such as spiders, cockroaches, beetles, lizards, snakes, and rats. According to WHO 2002 [9], the ideal mesh size for mosquito nets is between the ranges of 1.2-1.5 mm, and this helps to stop the incoming mosquitoes from gaining entrance. Smaller insects, e.g., biting midges and phlebotomine sandflies, may gain entrance. Jersey nets, which are opaque and very fine with a mesh size of 0.2 mm, and impregnated nets, can protect against the insects earlier mentioned. Those in hot climates are disadvantaged due to poor ventilation from fine mesh nets since any mesh size of about 1.5 mm can allow entrance to mosquitoes.
Seidlein et al. (2012) noted that if the discomfort that arises from the use of bed nets outweighs its benefits for the prevention of insect entrance and bites, then in the future, due to a decrease in the utilization of bed nets, there will not be use of these bed nets in Sub-Saharan Africa. In Nigeria, the population of people at risk of malaria continues to be on the rise due to low coverage of bed nets owing to airflow obstruction. Residual indoor spraying of insecticides (RIS), insecticide-treated nets (ITNs), and artemisinin-based combination therapies (ACTs) are the main intervention tools endorsed by WHO in recent years that are also used in malaria control campaigns. The disadvantages of malaria control measures that are based on these insecticides and therapeutic drugs include the emergence of vector resistance to insecticides and drug-resistant parasites. When there is pervasive use of potent IRS and ITNs, over time, it results in resistance. There is a growing concern that insecticide resistance against mosquitoes could lead to a rising incidence of malaria and an increase in fatalities in mosquito endemic areas such as Nigeria. Hence, supplementary control measures are required to ease the stress on the current ones. Thus, an effective and environmentally friendly process that is not dependent on insecticides could be a superior alternative to help reduce the selection pressure for insecticide resistance. Screening houses have long been practiced in climatic countries, majorly designed to keep insects away, and they were found to protect people against malaria when implemented in mosquito control studies in malaria endemic areas. Kirby et al. 2009 evaluated the medical implications of utilizing house screening in Africa and established that door and window screens and shut roof spaces minimized the occurrence of children suffering from anemia. A similar study by Diabate et al. (2013) combining mosquito trap and house screening methods as a tool for the control of the populations of mosquitoes, indicates a drastic reduction in the mosquito populations of mosquitoes indoors and the killing of the mosquitoes trapped. Celli’s research work on physical means for the control of borne diseases from mosquitoes indicated that porches and chimneys that are screened gave rise to significant reductions in malaria incidence (4% with screens vs. 92% without the intervention). Recent research on house screening has shown a significant reduction in the number of malaria-carrying mosquitoes and illness, and communities have overwhelmingly supported the intervention. Regardless of the importance of house screening, its use is still sparse and underutilized, most likely due to a lack of awareness about selecting the right standard screen mesh size for doors and windows in the house.

The use of house screens in windows and doors as a physical barrier for mosquito vector control is most suitable because it is effective, affordable, the equipment and materials are locally gotten, easy to comprehend and smear, environmentally friendly, and mostly accepted and well-suited to the philosophies, customs, and attitudes of the people. It is observed that the screening of all windows and vents has successfully reduced human-vector contact and eliminated malaria. The aim of this study is to determine the mesh sizes of door and window house screen nets used in Nigerian houses for mosquito vector control.

Materials and Methods

Type of study, area, and sample size

A cross-sectional study was carried out on 240 different houses within the Enugu metropolis for two months. The mesh sizes of windows and door nets were measured using a meter rule in mm.

Statistical analysis

The collected data were processed using the Statistical Package for Social Sciences (SPSS) version 21 software, which was used for data analysis. The statistical instrument was adopted to give the frequency and simple percentage of different mesh sizes.

Results

The results for mosquito mesh sizes obtained from 240 different houses are as shown in Table 1 and Figure 1. From Table 1, the majority of the houses screened had a mesh size of 2.0 mm, followed by a mesh size of 1.9 mm that recorded 31.25%, and finally a mesh size of 1.9 mm and 4.0 mm with the lowest percentage.

From our study (Figure 1), the number of houses with a mesh size of 1.5 mm and above constituted 56% of total houses (135 out of 240 visited), followed by 1.2 mm mesh constituting 31% with a and 13% for a mesh size range of 1.2–1.5 mm.

Table 1: Descriptive statistics of the mesh sizes

<table>
<thead>
<tr>
<th>S/No</th>
<th>Mesh size (mm)</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>75</td>
<td>31.25</td>
</tr>
<tr>
<td>2</td>
<td>1.2</td>
<td>3</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>1.3</td>
<td>3</td>
<td>1.25</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
<td>6</td>
<td>2.5</td>
</tr>
<tr>
<td>6</td>
<td>1.8</td>
<td>8</td>
<td>3.33</td>
</tr>
<tr>
<td>7</td>
<td>1.9</td>
<td>1</td>
<td>0.42</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>109</td>
<td>45.42</td>
</tr>
<tr>
<td>9</td>
<td>2.5</td>
<td>4</td>
<td>1.66</td>
</tr>
<tr>
<td>10</td>
<td>3.0</td>
<td>6</td>
<td>2.5</td>
</tr>
<tr>
<td>11</td>
<td>4.0</td>
<td>1</td>
<td>0.42</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>240</td>
<td>100</td>
</tr>
</tbody>
</table>

Discussion

The mosquito species responsible for transmitting parasitic and viral diseases to man are well established in Nigeria. Some mosquito-vectors inhabit indoors and bite at night and are referred to as endophilic and endophagic, respectively. This shows that most malaria transmission occurs indoors. Recent work has shown that vector control could provide effective interventions against mosquito-vector borne diseases such as malaria, leishmaniasis, yellow fever, dengue, zika virus, lymphatic filariasis, among others, and house screening has proven to be one of the factors influencing indoor vector densities and transmission of vector-borne.
diseases [23]. Results from this study demonstrated that screening of house doors and windows can provide a
protective barrier for families, reducing the number of indoor vectors and the prevalence of malaria in mosquito endemic
areas (Table 1 and Fig. 1). House screening, which involves the use of mosquito-netting (mesh) as a physical barrier to
prevent mosquito entry, has been found to contribute immensely towards reducing the burden of mosquito-borne
diseases [19]. Mosquito screens are typically made of metal wire, fiberglass, or other synthetic fiber stretched in a wooden
or metal frame to cover window and door openings. It
impedes mosquitoes from entering inside houses, thereby
reducing the amount of discomfort householders receive
indoors [24]. The use of house screening has registered
tremendous progress in malaria control for the first time since
the turn of the century, as reported by the World Health
Organization (WHO) [25, 26]. In 2018, there were an estimated
228 million cases worldwide (3 million fewer cases than
estimated in 2017), with 85% of cases occurring in 19 sub-
Saharan African countries and India. The most widely
recognized and effective measure for prevention of the
transmission of mosquito-borne diseases involves eliminating
human-vector contact through vector control, and it
constitutes a core strategy for malaria control in the African
region [20]. This can be achieved through the “mosquito-
proofing” of houses with house screening. It appears that
many homes that were covered during this research rely on
the use of mosquito screens on doors and windows for
protection against mosquito-borne diseases. One household-
randomized trial reported that indoor mosquito density fell by
40% after screening doors and windows and closing wall
openings and eave gaps with mud [27]. Houses with closed
eaves had a lower mean number of mosquitoes in a related
survey in Baringo, Kenya [28] than houses with open eaves in
a related survey in Baringo, Kenya [29]. Again, poorly
constructed houses were associated with a high prevalence of malaria in a cohort of young Ugandan children in East Africa
[29]. Houses with poorly screened windows and doors are
perceived to have high human-vector exposure compared with
properly screened houses, resulting in a corresponding higher
risk of mosquito entry and prevalence of mosquito-borne
diseases [22]. The effectiveness of house screens is dependent
on the mesh size, duration (usage), and how often they are
maintained. House screening is developed in various types of
design and mesh sizes (openings) to keep away insects while
maintaining better ventilation as required. Generally, house
screening with a reduced screen wire opening prevents insect
pests from entering the house. Protection ability is reduced with an increase in screen wire openings. Bearing this mind,
the major concern of an individual household would be the
trade-off between effective insect protection and good
ventilation [30]. The mesh size of the mosquito screen when it
is too large allows mosquitoes to naturally fly in through the
holes on windows and doors. Mosquito net screens are
designed to last between 3 and 5 years and to prevent mosquitoes from invading the home. However, it was
observed that some houses visited during this survey had their
net fitted for over a decade and had undergone tears and holes
owing to long-term usage. This accounts for the high
prevalence of malaria and other mosquito-borne diseases.
According to ISO criteria, the recommended mesh size for
most tropical countries is between 1.2 and 1.5 mm. A mesh
size of 1.2 mm stops mosquitoes from entering the house and
maintains good ventilation. From Figure 1 above, only 13%
(31 out of 240) of the houses visited during this survey had
their mosquito net mesh size within the recommended
standard range. The rest of the houses are either below or
above the recommended standard. This could be attributed to
a lack of knowledge of the standard mesh size required to
screen mosquito entry. Reasons given for not screening the
houses in a previous study included perceptions that it was
costly and also a lack of awareness regarding its effectiveness
in protecting against malaria [31]. The most widely used
mosquito-vector control tools to date include indoor residual
spraying (IRS) and insecticide-treated nets (ITNs). Studies
have suggested that these tools have been associated with a lot
of limitations, some of which include widespread insecticide
resistance observed across Africa [32]. These limitations have
led to decreased effective use of these interventions. In light
of the challenges associated with the current vector control
tool, there is a renewed interest in house screening and
modification. Researchers are now re-examining how house
screening may help protect people from mosquito-borne
diseases.

House screening for vector control has several appealing
advantages, which include: low risk of toxicity to humans and
non-target insects, compared to ITNs or IRS (safe to the user);
affordable and requiring low maintenance; lack of reliance on
insecticide bio-efficacy and mosquito susceptibility (no risk
of insecticide resistance); environmentally friendly and
providing level protection to the entire members of
households, unlike ITNs, which primarily give protection to
those sleeping under a net during the night hours only [22].

Conclusion
In order to ensure the maintenance and sustainability of house
screening interventions in reducing mosquito entry, there is a
need to improve community knowledge and perception of the
various mesh sizes available and the standard mosquito mesh
size required to screen houses from mosquito entry. Those
living in the houses need to understand the threats posed by
mosquito vectors and the need to prevent the spread of
diseases caused by mosquitoes. Such awareness will increase
the willingness of householders to implement other
approaches and modifications, such as closing doors and
windows at night and blocking routes of entry for mosquitoes
themselves.

Acknowledgement
Conflict of Interest Statement
The authors of this article have had no conflict of interest.

Funding Sources
This work received no support from any funding agency.

References
Health Organization, 2016.
3. Onwujekwe O, Chima RI, Okonkwo PO. Economic
burden of malaria illness versus that of a combination of
all other illnesses: a study in five malaria holo-endemic
4. Sinka ME, Bangs MJ, Manguin S, Rubio
Chareonviriyaphap T, et al. A global map of
5. Agwu N, Amadi M, Bertram EB, Nwoke O, Ikechukwu

~15~

Author’s Details

Adaobi J Dieke
Department of Applied Sciences, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria

Eze E Ajaegbu
Department of Applied Sciences, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria

Oluchi A Olofin
Department of Dental Therapy, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria

Juliet O Nwige
Department of Applied Sciences, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria
Adaora L Onuora
Department of Applied Sciences, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria

Ijeoma O Okolo
Department of Applied Sciences, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria

Benneth M Okike
Department of Dental Technology, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria

Chinenye A Nwobodo
Department of Applied Sciences, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria

Ethel E Adimora
Department of Applied Sciences, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria

Ukachukwu C Ezeh
Department of Applied Sciences, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria

Jane I Ugochukwu
Department of Pharmaceutical Microbiology and Biotechnology, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria

Abdulrasheed M Bello
Department of Applied Sciences, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria

Adeniran J Ikuesan
Department of Applied Sciences, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria

Blessing C Nwaso
Department of Applied Sciences, Federal College of Dental Technology and Therapy, Trans-Ekulu, Enugu State, Nigeria