Mosquitoes' larvicidal activity of *Phoenix dactylifera* Linn extracts against *Aedes aegypti*

Eze E Ajaegbu, Adeniran J Ikuesan, Florence O Nduka, Juliet O Nwigwe, Chigozie C Ezeagha, Nkeiru C Enyi and Phina C Ezeagwu

**Abstract**

*Aedes aegypti* mosquitoes are inducers of viruses such as DENV and ZIKV when they bite a person, which could lead to clinical symptoms like fever, headache, and rashes. This contemporary study aspired to examine the insecticidal potency of different extracts of the seed of *Phoenix dactylifera* on larvae of *Aedes aegypti*. The cold maceration process was used for the extraction of an accurately weighed 100 g of the finely powdered seed of *P. dactylifera* plant using hexane, petroleum ether, and methanol with strong shaking for 48 hours. Methanolic extract of *P. dactylifera* showed 52% mortality at 1000 ppm and 20% dead at 500 and 250 ppm, respectively, and showed no larvicidal potency at 125 ppm against the fourth instar larvae of *Ae. aegypti*. Whereas hexane and petroleum ether seed plant extracts were found to be equally less effective against the fourth instar larvae of *Ae. aegypti* species, both showed 20% and 12% at 1000 and 500 ppm, respectively. The various concentrations of *P. dactylifera* extracts of hexane, petroleum ether, and methanol induced the larvicidal potency (LC50) after 24 h against IV instar larvae of *Ae. aegypti* were 2049.229, 2049.229, and 984.488 ppm, respectively. It was concluded that the seed extracts of *P. dactylifera* are potential candidates to be utilized as novel plant insecticides in curbing the spread of DENV and ZIKV disease vectors.

**Keywords:** *Aedes aegypti*, *Phoenix dactylifera*, extract, larvicidal, mosquitoes, lethal dose

**Introduction**

Dengue virus (DENV) and Zika virus (ZIKV), belonging to the family of Flaviviridae, which are infected by *Aedes aegypti* and *Aedes albopictus*, have become one of the major threats among vector-borne diseases, especially in tropical areas [1, 2, 3]. Global travelers increase vector-borne disease transmission as a result of the effects of global warming and increased urbanization [3]. The dengue virus is majorly generated by *Ae. aegypti* also ZIKV is caused by mosquitoes like *Ae. aegypti*, *Aedes africanus*, *Aedes apicoargenteus*, *Aedes vitattus*, *Aedes luteocephalus*, and *Aedes furcifer* [4, 5].

These viruses, DENV and ZIKV, might be induced when a vector, such as an *Ae. aegypti* mosquito, bites a person, which could lead to clinical symptoms like fever, headache, and rashes. However, when the disease progresses to dengue hemorrhagic fever and dengue shock syndrome, it can cause plasma leakage, coagulopathy, and the inability of many organs to function [6, 7].

It is estimated that 500,000 of the 500,000 infected cases require hospitalization for dengue infection, with 5% dying each year [8]. Only in the year 2010, it was recorded that 390 million individuals were infected with dengue viruses, of which clinically evidenced that 96 million people were severe dengue, leading to 21,000 deaths worldwide [9]. Furthermore, several outbreaks of ZIKV have occurred in many African countries in Gabon, Cape Verde, Guinea-Bissau, and Angola in 2007, 2015, and 2016; a respective year of over 7000 suspected cases was reported. 80 per cent of cases of ZIKV infection were reported [9].

For dengue and Zika viruses, there are no current treatments for younger children. The dengue vaccine produced has not been approved for children under the age of eight due to the safety and efficacy of CYD-TDV-Dengvaxia®, a dengue vaccine. It is even only licensed to 20 countries for Zika [9, 11, 12]. Biological control, long-lasting insecticidal nets, choice of resistant diversities, and chemical control by terrestrial, air, or systemic methods are currently methods...
of controlling disease vectors such as *Ae. aegypti* and *Ae. albopictus* [13]. Negative consequences had been noted whenever conventional synthetic pesticides like carbamates, organochlorines and organophosphates were dispersed in the environment causing serious toxicity to human health, contaminated agricultural products, and development of resistance to commonly used insecticides [14]. Due to the toxicity of synthetic pesticides on humans, the management of breeding sites is now a widely applicable method for controlling the vectors as a complementary measure. This systemic way of reducing the number of larvae and nymphs of mosquito has resulted in larvicidal treatments, which required constant insecticide application [15, 16].

Recently, there has been an enormous effort to improve the attributes of plant extracts and isolated phytochemicals as insecticidal [10]. Several reports have shown that essential oils extracted from herbs such as *Lantana camara*, *Ocimum tenuiflorum*, *Taraxacum officinale*, *Saussurea lappa*, and *Ocimum kilimandscharicum*, *Nigella sativa*, and *Hyssopus officinalis* proved to be insecticidal agents owing to the presence of secondary metabolites [17, 18, 19].

The plant date palm (*Phoenix dactylifera* Linn) has been reported to contain secondary metabolites such as alkaloids, tannins, terpenoids, flavonoids, phenols, amino acids and carbohydrates which could serve as agents of larvicide [20]. Source of energy and nutrients that comprise the substantial diet balance required for the body, and dietary fibres derived from many plants that have therapeutic importance in preventing obesity, diabetes, hypertension, coronary heart disease, and hyperlipidemia [21]. Also, this plant has shown to have anti-inflammatory, anti-bacterial, antifungal, antiviral, anti-ulcerative, anticancer, antioxidant, hepato-protective, and anti-mutagenic potentials due to the presence of phytochemical constituents [22, 23].

However, great work needs to be carried out on mosquito control. This contemporary study aspired to examine the insecticidal potency of different extracts of the seed of *P. dactylifera* on larvae of *Ae. aegypti*.

### Materials and Methods

#### Plant Collection

The collected *P. dactylifera* seeds were acquired from the Federal College of Dental Technology and Therapy (FCDT & T), Enugu, in October 2021. The recognition of the seed part of the plant was done by a plant taxonomist Mr. Alfred Ozioko from the Bio-resources Development and Conservation Programme (BDCP), Nsukka, Enugu State, Nigeria. The collected plant seed was made waterless at room temperature (25±2 °C) for two weeks. The dried seeds of *P. dactylifera* were fine-grained into fine particles operated with an electric-powered grinder and then later with muslin cloth of particle size of 0.4 mm. The fine-powered plant material was kept in a non-transparent container and stored in a refrigerator at a temperature below 4 °C before it was collected for extractions.

#### Preparation of Plant Extract

The cold maceration process was used for the extraction of accurately weighed 100 g of the finely powdered seed of *P. dactylifera* plant using hexane, petroleum ether, and methanol with strong handshaking for 48hours in the Research Laboratory of the School of FCDT & T, Enugu State. The extracts suspended were filtrated using Buchner funnel was incorporated into Whatman® No. 1 filter paper of particle size of 24 cm. A rotary flash evaporator (RE300-ROTAFLLO, England) was employed for the concentration of the crude extracts of the seed of the plant and kept at (40±5 °C) in an air-tight bottle and preserved in a refrigerator below the temperature of -4 °C until further use. All procedures were strictly followed according to Ajiaebu et al., 2022 [24].

#### Sources of mosquito larvae

All the larvae of *Ae. aegypti* employed for this research were obtained from National Arbovirus and Vectors Research Centre in Enugu, and all tests were performed against laboratory standards. The rearing of the *Ae. aegypti* larvae were carried out using distilled water and populated in the laboratory of the School of Preliminary Studies, FCDT&T, Enugu State. The reared larvae of *Ae. aegypti* was rid of vulnerability to insecticidal and pathogens, and the larvae were fed on larval food (grower-chicken feed & fish in a proportion of 3:1). The water that was supplied in culture beaker was conscientiously replaced every day in an alternating manner before IV instar larvae were habituated for bioassay and adult *Ae. aegypti* mosquitos were enriched with a 10% sugar mixture for 5 days. Matured *Ae. aegypti* mosquitos were periodically fed with Guinea pig blood. Mosquitoes were kept at 26±3 °C, 80±4% RH, and 12: 12 (L: D) h photoperiod cycles [25].

#### Larvicidal Bioassay

The plant's susceptibility to *Ae. aegypti* larval IV instar was tested using the standard WHO procedure with some modifications [26]. All of the bioassays were performed in a temperature-controlled room (26±2 °C) with 81±2% relative humidity. The stock solutions of each of the plant extracts were prepared by dissolving accurately weighed 1g of the powdered seed of *P. dactylifera* plant in 2 ml of Tween 80 (an emulsifier) then further increased up to 100 ml of distilled water volumetrically as stock solutions. To obtain four concentrations (1000, 500, 250, and 125 ppm), a serial dilution method was employed for each of the plant extracts, which gave larvae mortality in 48 hours. To ascertain the activity profiles, mosquito larvae were subjected to concentrations of a broad range of the three extracts. All the experiments (extracts) were carried out three times with an equal quantity of controls that were set up simultaneously against larvae of *Ae. aegypti* mosquito species. The two controls were set up. The first was a negative control, which was a mixture of 1ml of Tween 80 in 99 ml of tap water, and the other was a positive control with a daksh insecticide (Dichlorvos 100% EC weight/volume) with a concentration of 2500 ppm (recommended concentration). The insecticide used as a positive control was gotten from the local market at Awka market, Anambra State, Nigeria. Groups of 25 (n = 25) early IV instar larvae were transferred through droppers to each 250 ml beaker, containing 100 ml of the test extracts with various concentrations, which gave larval mortality after 24 hours of post-treatment for the tests and controls. Each dose was run four times on different days with the controls, and no food was supplied to the larvae in the test and control groups. The percentage mortality at each concentration was expressed from the dead larvae. If the bioassay tests showed > 20% negative control mortality, the experiments were discarded and repeated. However, during the experiment when bioassay when larvae were unresponsive to gentle prodding with a fine needle, they were considered dead and the observed was corrected by Abbott’s formula where
negative control mortality ranged from 5-20%, and (Abbott 1925) [27].

Statistical evaluation
The percentage of larval mortality data was subdued to Probit evaluation for calculating LC50, LC90 mortality of larvae 24 h post-exposure and other statistics at 95% confidence (limits of upper confidence limit, lower confidence limit), slope and chi-square values, and the mean was calculated using the Student Newman Keuls (SNK) test significantly (p=95%) were calculated using the SPSS 23.0 (Statistical Package of Social Sciences) software. p>0.05 results were considered statistically significant [28].

Results
The results of the larvicidal activity of P. dactylifera are presented in Table 1. Methanolic extract of P. dactylifera showed 52% mortality at 1000 ppm and 20% dead at 500 and 250 ppm, respectively, and showed no larvicidal potency at 125 ppm against the fourth instar larvae of Ae. aegypti. Whereas hexane and petroleum ether seed plant extracts were found to be equally less effective against the fourth instar larvae of Ae. aegypti species, both showed 20% and 12% at 1000 and 500 ppm, respectively. The various concentrations of P. dactylifera extracts of hexane, petroleum ether, and methanol induced the larvicidal potency (LC50) after 24 h against IV instar larvae of Ae. aegypti were 2049.229, 2049.229, and 984.488 ppm, respectively. On the other hand, the larvicidal activity (LC90) of the plant seed extracts of hexane, petroleum ether, and methanol was 9108.3, 9108.31, and 4122.79 ppm, respectively, against IV instar larvae after 24 h of post-exposure (Table 1).

![Image](omoljournal.com)

Table 1: Phoenix dactylifera seed solvent extracts against larval Aedes aegypti, 24 h post-exposure

<table>
<thead>
<tr>
<th>Plant Extract</th>
<th>Conc (ppm)</th>
<th>% Mortality (Mean ± SD)</th>
<th>LC50(UCL–LCL) (ppm)</th>
<th>LC90(UCL–LCL) (ppm)</th>
<th>Slope ± SE</th>
<th>$\chi^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexane</td>
<td>125</td>
<td>0 ± 0*</td>
<td>2049.229 (99386.48-1151.66)</td>
<td>9108.31 (22270320.55-2432.64)</td>
<td>2.372±0.935</td>
<td>1.372</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>0 ± 0*</td>
<td>2049.229 (99386.48-1151.66)</td>
<td>9108.31 (22270320.55-2432.64)</td>
<td>2.372±0.935</td>
<td>1.372</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>12 ± 2.0*</td>
<td>2049.229 (99386.48-1151.66)</td>
<td>9108.31 (22270320.55-2432.64)</td>
<td>2.372±0.935</td>
<td>1.372</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>144.0*</td>
<td>2049.229 (99386.48-1151.66)</td>
<td>9108.31 (22270320.55-2432.64)</td>
<td>2.372±0.935</td>
<td>1.372</td>
</tr>
<tr>
<td>Petroleum Ether</td>
<td>125</td>
<td>0 ± 0*</td>
<td>984.488 (2260.49-678.96)</td>
<td>4122.79 (35671.98-1928.76)</td>
<td>2.06±0.522</td>
<td>3.583</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>0 ± 0*</td>
<td>984.488 (2260.49-678.96)</td>
<td>4122.79 (35671.98-1928.76)</td>
<td>2.06±0.522</td>
<td>3.583</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>12 ± 2.6*</td>
<td>984.488 (2260.49-678.96)</td>
<td>4122.79 (35671.98-1928.76)</td>
<td>2.06±0.522</td>
<td>3.583</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>20 ± 3.0*</td>
<td>984.488 (2260.49-678.96)</td>
<td>4122.79 (35671.98-1928.76)</td>
<td>2.06±0.522</td>
<td>3.583</td>
</tr>
<tr>
<td></td>
<td>F-value</td>
<td>72.0*</td>
<td>984.488 (2260.49-678.96)</td>
<td>4122.79 (35671.98-1928.76)</td>
<td>2.06±0.522</td>
<td>3.583</td>
</tr>
<tr>
<td>Methanol</td>
<td>125</td>
<td>0 ± 0*</td>
<td>984.488 (2260.49-678.96)</td>
<td>4122.79 (35671.98-1928.76)</td>
<td>2.06±0.522</td>
<td>3.583</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>20 ± 3.67*</td>
<td>984.488 (2260.49-678.96)</td>
<td>4122.79 (35671.98-1928.76)</td>
<td>2.06±0.522</td>
<td>3.583</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>20 ± 1.0*</td>
<td>984.488 (2260.49-678.96)</td>
<td>4122.79 (35671.98-1928.76)</td>
<td>2.06±0.522</td>
<td>3.583</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>326.59*</td>
<td>984.488 (2260.49-678.96)</td>
<td>4122.79 (35671.98-1928.76)</td>
<td>2.06±0.522</td>
<td>3.583</td>
</tr>
<tr>
<td></td>
<td>F-value</td>
<td>72.0*</td>
<td>984.488 (2260.49-678.96)</td>
<td>4122.79 (35671.98-1928.76)</td>
<td>2.06±0.522</td>
<td>3.583</td>
</tr>
</tbody>
</table>

Means within a product followed by the same letter do not differ significantly at p=0.05 (Student-Newman-Keuls’s test); *p<0.05; LC50 and LC90: Lethal concentrations able to kill 50 and 90% of larvae, respectively; ppm: Parts per million; LCL: Lower confidence limit; UCL: Upper confidence limit; (−): No confidence limit estimated; $\chi^2$: Chi-square; Number of replicates: 4.

Discussion
Curbing and reducing dengue and Zika vector-borne diseases is a vital tool via mosquito larval controlling agents in using plant extracts as possible larvicides measure have been regarded another as a workable and preferred choice in the control of mosquito species at various community levels. A large number of plant extracts have been reported to have mosquitoxicidal or repellent activities against mosquito vectors, but few plant products have shown practical utility for mosquito control [29].

The results in our study are affirmative with previous reports that showed plant extracts possess secondary metabolites and have insecticidal activity. According to Bouda et al. (2001), oil from L. camara caused 100 per cent mortality in Sitophilus zeamais at a concentration of 0.5% (v/v) [30], with leaf and bark extracts of Cryptomeria japonica showed that it has strong larvicidal activity against Ae. aegypti [31]. Similarly, research conducted on the fruit extract of Thevetia nerifolia and the leaf extracts of Calotropis procera and Solanum macrocarpon had moderate (about 56%) larvicidal activity after 48 hours [32].

This present study revealed that methanolic extract of the seed part of P. dactylifera showed greater larvicidal activity of 52% and 20% at concentrations of 1000 and 250 ppm, respectively, against the IV instar larvae of Ae. aegypti in contrast to the extracts of hexane and petroleum ether of P. dactylifera, which showed similar larvicidal activity of 20% and 12% at concentrations of 1000 and 500 ppm, correspondingly, against the fourth instar larvae of Ae. aegypti. Our results are consistent with those reported by Oluah and Ezeabiaikwa (2011) [33]. The extracts of leaf of L. camara using aqueous and methanolic extractions of concentrations (0.3, 0.6, 0.9, and 1.2 g/L). After 24-hour exposure showed percentage mortality rates in larvae treated with 0.3 to 1.2 g/L of ethanolic L. camara leaf extract ranged from 91.66 to 96.66% found very effective when compared with aqueous extract counterpart [33].

Likewise, Kamaraj et al showed the larvicidal activity of the bark A. squamosal against the larvae of Anopheles subpictus and Culex triaeniorhynchus (LC50 = 93.80, 104.94 mg/ml), leaf ethyl acetate extract of C. indicum against the larvae of An. subpictus and Cx. triaeniorhynchus (39.98, 42.29 mg/ml) and leaf acetone extract of T. procumbens against the larvae of An. subpictus and Cx. triaeniorhynchus (51.57 mg/l, 69.16 mg/l) [34].

It is also in agreement with researches conducted by Nnamani et al. (2008) [35], Nayak and Trajani (2014) [36] and Chandrasekaran et al. (2019) [37]; they reported that volatile oil and leaf methanol extract of Vitex negundo and Vitex trifolia have strong bio-control potential against Cx. quinquefasciatus and Ae. aegypti [35, 36, 37]. The research was conducted on mature fruits and leaves from Toddalia asiatica using hexane, acetone, and methanolic...
solvent extraction against Dengue carrier (Ae. aegypti), and the filarial vector (Cx. quinquefasciatus). Extracts of hexane manifested highest larvicidal activity compared to acetone, and methanol extracts against these mosquito Dengue vectors (Ae. aegypti) disease with LC50 (37.23, 50.69, and 125.55 ug/ml) and filarial transmitter (Cx. quinquefasciatus) (33.23, 82.20, and 215.19 ug/ml). Hexane, acetone, and methanol extracts of leaves also showed potency against Ae. aegypti with LC50 values of 133.80, 177.20, and 79.48 and against Cx. quinquefasciatus with LC50 values of 164.53, 175.28, and 87.87 ppm, respectively [38]. The purpose of this work was to study the larvicidal activity of Cassia occidentalis (Linn.) against the larvae of Cx. quinquefasciatus [38].

Similarly, Deepak et al. 2014 reported the efficacy of petroleum ether and N-butanol extract of C. occidentalis (Linn.) at various concentrations tested on third instar larvae of Cx. quinquefasciatus. Their work proclaimed that petroleum ether and N-butanol extract of C. occidentalis (Linn.) completely have a mortality effect on the larvae of Cx. quinquefasciatus at 200 and 300 ug/ml and deduced that larvae of the most transmitters that cause deadly destructive diseases such as filariasis, dengue, yellow fever, malaria, Japanese encephalitis, chikungunya which are considered harmful to the population in tropic and subtropical regions can be terminated with the use of extract from secondary metabolites [39].

Moreover, it has been established the presence of tannins, flavonoids, anthocyanins, leuco-anthocyanins, and triterpenes in n-hexane, dichloromethane, and methanol extracts of Elaeis oleifera and Launaea taraxacifolia and their further evaluation against the 3rd stage larvae of two genotypes of An. gambiae mosquito. Ahousansou et al. (2017) [15] revealed that the hydro-methanolic of E. oleifera and L. taraxacifolia extracts were found to be the most active on the two larval origins, with LC50 of (448.01 ppm and 182.68 ppm) for 24 hours and (51.38 and 135.13 ppm) for 48 hours exposure for the Kisumu strain and (4199.63 ppm and 157.36 ppm) for 24 hours and (1456.44 and 116.88 ppm) for 48 hours exposure for wild larvae [15].

Furthermore, similar studies carried out by Govindarajan (2010) showed a larvicidal efficacy of the methanolic extract of Ficus benghalensis on larvae of Cx. quinquefascia, Ae. aegypti, and Anopheles stephensi compared to the solvents acetone and benzene [40]. The crude extracts studied presently gave varying degree of larvicidal potential, which is attributable to the phytoconstituents in P. dactylifera.

Conclusions

The seed extract of P. dactylifera exhibited remarkable larvicidal activity against Ae. aegypti larvae, with harmful effects on the larvae. Its consequential toxic effects were an additional symbol that indicated larvicidal activity of the plant is concentration-dependent. The seed extracts of P. dactylifera are potential candidates to be utilized as a novel plant insecticide in curbing the spread of DENV and ZIKV disease vectors. In addition, because different extracts of the seed of P. dactylifera have proven to be an insecticidal activity that can be effortlessly, and universally cultivated, it is, therefore, a precious replacement for the effective and eco-friendly control of vector-borne infection for both advanced communities.

References


