Bioefficacy of different formulations of *Metarhizium anisopliae* (Metchnikoff) Sorokin IOF strain (KF408075) against *Oryctus rhinoceros* (Linnaeus) *in vitro* condition

Sharanabasappa MG and Patil RK

Abstract

The laboratory experiments were carried out at the Institute of Organic Farming (IOF), UAS, Dharwad, during 2014-2015 to study the bioefficacy of different formulations of *Metarhizium anisopliae* against coconut rhinoceros grubs, *Oryctus rhinoceros* (Linnaeus). Among different oil based formulation, rice bran oil (60%) + corn oil (40%) formulation found least LC$_{50}$ value (1.99 x 106 cfu/ml) at 432 h. In granular and wettable powder formulation, the granular formulation recorded least LC$_{50}$ value 0.44 x 108 cfu/g at 240 h. The median lethal time (LT$_{50}$) of different oil based formulations, the rice bran oil (60%) + corn oil (40%) formulation @ 3 x 106 cfu / ml recorded lower LT$_{50}$ value of 319.89 h (13.32 days). Among granular and wettable powder formulation, the granular formulation @ 5 x 108 cfu / g, proved most effective exhibiting 50 per cent of mortality with least LT$_{50}$ value of 162.88 h (6.78 days).

Keywords: Rhinoceros grubs, *Metarhizium anisopliae*, formulations

Introduction

The entomopathogenic fungi are normal components of the natural agents that affect insect populations and when host densities are high, they are been known to produce rapid and spectacular epizootics. Among the existing several insect pathogens, entomopathogenic fungus, *M. anisopliae* found most promising one because of its wide spread occurrence and relative abundance due to its wide host range which includes all of the major insect pests. For instance, *M. anisopliae* can parasitise as many as 200 different species of insects (Hajek and Leger 1994) [3]. Entomopathogenic fungus *M. anisopliae* has been intensively studied to control a wide species of insect pests, including the coconut *O. rhinoceros* (Sivapragasam and Tey, 1995; Ramle et al., 1999) [11, 8]. In this study, the efficacy of different formulations of *M. anisopliae* IOF strain (KF408075) pathogenicity of the oil based, granular and wettable powder formulations against the grubs of the *O. rhinoceros* was taken up.

Material and Methods

A laboratory experiment was carried out to prepare the different formulations of *M. anisopliae* at the Institute of Organic Farming (IOF), UAS, Dharwad during 2015. The detailed methodology followed for preparation of formulations as detailed below:
Preparation of granular formulation

The granular formulation was prepared by using 70 g of freshly harvested *M. anisopliae* spores (10⁹ spores/ g) developed on broken rice, mixed with 1 kg of talc powder + 200 g Bentonite clay + 200 ml Rice bran oil + 200 ml gum and required quantity of distilled water was added. All the ingredients were mixed thoroughly to get a fine paste, which was passed through manually operated device (chakali making device) for making uniform sized granules of proper size (< 1mm) and shape and further, it was shade dried for 24 h in a tray. After shade drying, the dried granules were stored in a polythene bag for further study.

Preparation of oil-based formulation

The oil-based formulation of *M. anisopliae* was prepared by using freshly harvested four grams of *M. anisopliae* dry conidia (10⁵ spores/ g) obtained from broken rice for which 20 ml of oil (rice bran oil (60%) + corn oil (40%), rice bran oil and olive oil) + 20 ml glycerol, were mixed and homogenized by using vertical mixture for five minutes for proper encapsulation of spores for which 956 ml of distilled water was added + 0.1% of tween-80 as spreading agent of the spores.

Preparation of wettable powder formulation

Ten grams of dried conidia of *M. anisopliae* cultured on broken rice grains (10⁹ cfu/ g) was mixed with 90 g of carrier material (talc) to get 1.9x10⁹ cfu / g of product. Before mixing the carrier material sieved through 355 mesh size sieves to maintain uniformity in particle size of conidial powder. The carrier material sterilized in an autoclave at 121°C and 15 Psi for 30 min and mixed with conidial after two days for which CMC (…………) was added.

Invitro studies bio-efficacy of different formulations of *M. anisopliae* against rhinoceros grubs was carried out in the Entomology laboratory, Institute of Organic Farming (IOF), UAS Dharwad. Bio-efficacy of granular, oil based and wettable powder (standard check) formulations of *M. anisopliae* were carried out against third instar rhinoceros grubs.

The third instar grubs of uniform size and weight were collected from FYM pit, maintained at MARS, Dharwad brought to the laboratory and released in to plastic cups (diameter 25 cm and height 30 cm) containing 1 kg of FYM mixed with different concentration of *M. anisopliae* granular formulations (0.60, 1.25, 2.50, 5.00 and 10.00 g of granules/ kg of FYM), oil based formulations (1.00, 1.50, 2.00, 2.50 and 3.00 ml of stock solution containing tween 80 added to 1 kg of FYM) and wettable powder formulation 0.60 g, 1.25 g, 2.50 g, 5.00 g and 10.00 g of WP formulation of *M. anisopliae* per kg FYM was added and maize seeds were sown in pot, to provide food for grubs and sprinkled with water daily to maintain humidity, (> 80% RH), for sporulation of grubs. Each treatment was replicated three times, for each replication 10 grubs were released. The number of dead grubs recorded from 5th day onwards till the death of all the grubs. Finally, per cent corrected mortality of grubs was worked out by using Abbott’s formula:

\[
\text{Per cent corrected mortality} = \frac{Y}{X} \times 100
\]

where:
- \(Y\): Number of grubs dead in control
- \(X\): Number of grubs dead in treatment
- \(X\): Total number of grubs used in control
- \(Y\): Number of grubs dead in control

A total of five concentration of each formulation of *M. anisopliae* with three replications was maintained to get mortality range between 20 to 80 per cent to find out LC₅₀ and LT₅₀ values by using Proc Life Reg procedure and data were fitted to a Weibull distribution (SAS OnlineDoc 9.1.3) for different formulation of *M. anisopliae* developed against third instar grubs of rhinoceros beetle.

Results and Discussion

The results pertaining to LC₅₀ and LT₅₀ of different formulations viz., oil based, granular and wettable powder formulations against *O. rhinoceros* grubs are presented. The mortality response of coconut rhinoceros grubs to rice bran oil (60%) + corn oil (40%) formulation of *M. anisopliae* which was found to be superior over the rice bran oil and olive oil formulations. The results from the laboratory studies, revealed that, among the oil based formulations evaluated, the combination of rice bran oil (60%) + corn oil (40%) formulation found superior in getting higher mortality of rhinoceros grubs with lower LC₅₀ value of 1.99 x 10⁶ cfu / ml, followed by rice bran oil formulation (2.19 x 10⁶ cfu / ml) and olive oil formulation (2.39 x 10⁶ cfu / ml) at 432 h (Table 1).

In the present findings of the granular formulation recorded least LC₅₀ value 0.441 x 10⁶ cfu / g, compared to wettable powder formulation 0.684 x 10⁶ cfu / g at 240 h (Table 2). However, the granular formulation found least LC₅₀ value compared to wettable powder formulation. As the concentration of spore load increases with increase in mortality percentage and decrease in time. Similarly, (Ramle et al., 2006)⁹ reported that, the dipping the rhinoceros grubs in a spore solution of *M. anisopliae* of 10⁸ cfu / ml, caused 100% mortality after 12 and 14 days. Varma and Yamin (2013)¹² reported that, the application of *Metarhizium anisopliae* @ 300 ml/lit of water / m² area (10⁶ cfu / lit of water) in manure pits coconut basins and other breeding sites during wet conditions. Observations after three weeks of treatment showed 100% mortality of *O. rhinoceros* grubs by *M. anisopliae* and after 6 months, reduction of pest attack from 85% to 10%. Similarly, In glasshouse pot experiment with perennial ryegrass (*Lolium perenne* L.), the *M. anisopliae* isolate CLO 53 caused mortalities of 50 and 88% of *Hoplia philantus* larvae 10 weeks after application of 10⁴ and 10⁶ cfu / cm² soil surface (Ansari, 2004)¹. The variation in virulence of different isolates, origin from different geographical locations were reported by various workers (Fernando et al., 1995)² reported that the *M. anisopliae* caused 100% mortality of *Oryctes rhinoceros* larvae and adults when treated with suspensions of 10⁷ cfu / ml, in laboratory condition. (Khudhairi et al., 2015)¹⁵ reported that, the virulence of entomopathogenic fungi *Metarhizium anisopliae* was tested against Arabian Rhinoceros Beetle, *Oryctes agammon* armatus (Illigeri) larvae at (1x10⁶ cfu / ml) locally isolated entomopathogenic fungi spore suspensions directly sprayed on grubs to cause high mortality rate reaching 100% after 29 days. Makaka and Caston (2008)⁷ reported that, oil based formulation of *M. anisopliae* isolate (IMI098376) found least LC₅₀ value (4.47x10⁶ cfu / ml) against black maize beetle, *Heteronychus lycasis* (Seidtiz) at 13.30 weeks.

Bioefficacy of entomopathogenic fungus, *M. anisopliae* formulations viz., oil, granular and wettable powder formulations to the third instar rhinoceros grubs *in vitro* condition. The present findings indicated that in general, the concentration of inoculum and time required to kill 50 per
cent mortality of rhinoceros grubs was inversely correlated. Among different formulations evaluated under laboratory condition, rice bran oil (60%) + corn oil (40%) formulation @ 3 x 10^8 cfu / ml, recorded lower LT_{50} value of 319.89 h (13.32 days) followed by rice bran oil formulation 343.46 h (14.31 days), and olive oil formulation 357.12 h (14.88 days) (Table 3). The granular formulation @ 5 x 10^8 cfu / g, proved to be most virulent exhibiting 50 per cent of mortality with least time of LT_{50} value of 162.88 h (6.78 days), followed by wettable powder formulation @ 5 x 10^8 cfu / g recorded more LT_{50} value of 177.80 h (7.40 days) (Table 4). However, the present study revealed that the, concentration of the doses increases with increasing in the mortality with decrease in time. The present findings are in line with, (Latifina and Rad, 2012) [6] reported that, conidial suspension of *M. anisopliae* isolate (DEMID 01) were found lowest LC_{50} value of (5.69 x 10^6 cfu /ml), against *Oryctes elegans* and LT_{50} values of *M. anisopliae* ranges, from 6.45 to 10.12 days under laboratory condition. Sharma et al. (1999) [10] who reported that, first instar grub *H. consanguinea* which has taken least time to kill 50 per cent of mortality compared to second and third instars at 4 x 10^7 cfu / g. Similar finding was also made by Inglis et al. (1993) [3] who reported that young larvae of European corn borer was more susceptible to *M. anisopliae* oil based formulation than the older larvae. Makaka and Caston (2008) [7] reported that, median lethal time LT_{50} of oil based formulation *M. anisopliae* isolate (IMI098376) against black maize beetle, *Heteronychus licas* at the lowest concentration (3.10x10^6 cfu / ml) causes 50 per cent of mortality in 13.3 week.

Table 1: Median lethal concentration (LC_{50}) of oil based formulations of *M. anisopliae* IOF1 strain (KF408075) against 3rd instar coconut rhinoceros grubs, *Oryctus rhinoceros* (Linnaeus)

<table>
<thead>
<tr>
<th>Formulation</th>
<th>LC_{50} (cfu/g)</th>
<th>Fiducial limits of LC_{50} (cfu/g)</th>
<th>Regression equation (Y=a+bx)</th>
<th>LC_{95} (cfu/g)</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice bran oil (60 %) + corn oil (40%) formulation</td>
<td>1.992 x 10^8 (cfu/ml)</td>
<td>2.253 x 10^8 (cfu/ml)</td>
<td>Y= 2.076x+4.488</td>
<td>3.438 x 10^8 (cfu/ml)</td>
<td>3.325</td>
</tr>
<tr>
<td>Rice bran oil formulation</td>
<td>2.194 x 10^8 (cfu/ml)</td>
<td>2.741 x 10^8 (cfu/ml)</td>
<td>Y= 2.633x+5.909</td>
<td>3.584 x 10^8 (cfu/ml)</td>
<td>0.386</td>
</tr>
<tr>
<td>Olive oil formulation</td>
<td>2.388 x 10^8 (cfu/ml)</td>
<td>2.943 x 10^8 (cfu/ml)</td>
<td>Y= 1.991 x 0.438</td>
<td>4.900 x 10^8 (cfu/ml)</td>
<td>5.200</td>
</tr>
</tbody>
</table>

Table 2: Median lethal concentration (LC_{50}) of granular and wettable powder formulations of *M. anisopliae* IOF1 strain (KF408075) against 3rd instar coconut rhinoceros grubs, *Oryctus rhinoceros* (Linnaeus)

<table>
<thead>
<tr>
<th>Formulation</th>
<th>LC50 (cfu/g)</th>
<th>Fiducial limits of LC50 (cfu/g)</th>
<th>Regression equation (Y=a+bx)</th>
<th>LC95 (cfu/g)</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular formulation</td>
<td>0.441 x 10^8 (cfu/ml)</td>
<td>0.517 x 10^8 (cfu/ml)</td>
<td>Y= 0.946 x 0.172x</td>
<td>1.829 x 10^8 (cfu/ml)</td>
<td>0.307</td>
</tr>
<tr>
<td>Wettable powder formulation</td>
<td>0.684 x 10^8 (cfu/ml)</td>
<td>0.931 x 10^8 (cfu/ml)</td>
<td>Y= 0.446 x 0.153x</td>
<td>2.283 x 10^8 (cfu/ml)</td>
<td>4.226</td>
</tr>
</tbody>
</table>

Table 3: Median lethal time (LT_{50}) of oil based formulations of *M. anisopliae* IOF1 strain (KF408075) against 3rd instar coconut rhinoceros grubs, *Oryctus rhinoceros* (Linnaeus)

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Dose (cfu/ml)</th>
<th>LT_{50} (hrs)</th>
<th>Fiducial limits of LT_{50} (hrs)</th>
<th>Regression Equation (Y=a+bx)</th>
<th>LT_{95} (hrs)</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice bran oil (60 %) + corn oil (40%) formulation</td>
<td>2.5 x 10^8 (cfu/ml)</td>
<td>338.36</td>
<td>302.23</td>
<td>Y= 20.200 x 4.823x</td>
<td>543.68</td>
<td>0.102</td>
</tr>
<tr>
<td>Rice bran oil formulation</td>
<td>2.5 x 10^8 (cfu/ml)</td>
<td>384.10</td>
<td>343.16</td>
<td>Y= 19.706 x 5.468x</td>
<td>631.20</td>
<td>0.854</td>
</tr>
<tr>
<td>Olive oil formulation</td>
<td>2.5 x 10^8 (cfu/ml)</td>
<td>394.99</td>
<td>348.54</td>
<td>Y= 17.721 x 4.992x</td>
<td>688.02</td>
<td>0.219</td>
</tr>
</tbody>
</table>

Table 4: Median lethal time (LT_{50}) of granular and wettable powder formulations of *M. anisopliae* IOF1 strain (KF408075) against 3rd instar coconut rhinoceros grubs, *Oryctus rhinoceros* (Linnaeus)

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Dose (cfu/g)</th>
<th>LT_{50} (hrs)</th>
<th>Fiducial limits of LT_{50} (hrs)</th>
<th>Regression Equation (Y=a+bx)</th>
<th>LT_{95} (hrs)</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular formulation</td>
<td>2.50 x 10^8 (cfu/g)</td>
<td>164.42</td>
<td>136.69</td>
<td>Y= 25.029 + 5.844x</td>
<td>223.97</td>
<td>0.380</td>
</tr>
<tr>
<td>Wettable powder formulation</td>
<td>5.00 x 10^8 (cfu/g)</td>
<td>177.80</td>
<td>152.81</td>
<td>Y= 31.306 + 8.317x</td>
<td>205.88</td>
<td>0.390</td>
</tr>
</tbody>
</table>

References

6. Latifina M, Rad B. Pathogenicity of the entomopathogenic fungi *Beauveria bassiana* (Balsamo Vuillimin, *Beauveria brongniartii* Saccardo and...

