

Journal of Entomology and Zoology Studies

J Journal of Entomology and Zoology Studies

Available online at www.entomoljournal.com

E-ISSN: 2320-7078 P-ISSN: 2349-6800

JEZS 2015; 3 (1): 21-26 © 2015 JEZS www.entomoljournal.com Received: 06-11-2014 Accepted: 29-11-2014

Subrata Trivedi

Department of Biology, Faculty of Science, University of Tabuk, Tabuk-71491, Kingdom of Saudi Arabia.

Abdulhadi A Aloufi

Department of Biology, Faculty of Science, University of Tabuk, Tabuk-71491, Kingdom of Saudi Arabia.

Abid A Ansari

Department of Biology, Faculty of Science, University of Tabuk, Tabuk-71491, Kingdom of Saudi Arabia.

Sankar K. Ghosh

Department of Biotechnology, Assam University, Silchar-788011, Assam, India.

Correspondence: Subrata Trivedi Department of Biology, Faculty of Science, University of Tabuk, Tabuk-71491, Kingdom of Saudi Arabia.

Molecular phylogeny of oysters belonging to the genus Crassostrea through DNA barcoding

Subrata Trivedi, Abdulhadi A Aloufi, Abid A Ansari and Sankar K. Ghosh

Abstract

The mangrove dominated Sundarbans is a biodiversity rich complex ecosystem inhabited by a large variety of marine and estuarine species including the oysters. Aquaculture of the edible oysters is regarded as an alternative livelihood of the human population inhabiting this region. The edible oysters necessitate the genetic variation studies among the different species of same genus. Identification of juveniles and immature stages of marine oysters is very difficult using traditional taxonomic approach. DNA barcoding of two oysters belonging to the genus *Crassostrea* collected from the Sundarbans was done. The nucleotide sequences were very similar to each other with only one nucleotide substitution. 44 barcode sequences belonging to 9 species of the genus *Crassostrea* revealed that different species formed distinctive clusters. The mean sequence divergence of the novel sequences of *Crassostrea gryphoides* and *Crassostrea cuttackensis* were greater than one where as the mean sequence divergence of the other seven species of *Crassostrea* was very low. The limited number of barcode sequences would be overcome through the worldwide barcoding initiative, which would refine the results and overcome the shortcomings of using smaller sample sizes.

Keywords: Crassostrea, Sundarbans, mtDNA, DNA Barcode, Sequence divergence, COI gene.

1. Introduction

Aquaculture and breeding programs of edible oysters necessitates the genetic variation studies among the different species of the same genus. Identification of oysters is largely based on phenotypic characters like shell morphology, but the process seems to be highly problematic due to the taxonomic controversies. For example, shell morphology, which is usually used as a primary distinguishing feature, is greatly affected by habitat [1]. Traditional morphology based on taxonomic procedures are time consuming and not always sufficient for identification to the species level. Besides this, the proposed introduction of oyster species in regions where the oyster population has been depleted or totally obliterated (e.g. proposed introduction of Crassostrea ariakensis to the Chesapeake Bay of USA), it is necessary to properly identify species so that risk assessment studies can be done to avoid introduction of unwanted species especially invasive alien species (IAS). The idea of a standardized molecular identification system emerged with the PCR based approaches for species identification. This technique has been applied for bacterial and microbial biodiversity studies as well as routine pathogenic strains diagnosis [2-5]. In this regard, Hebert et al. [6, 7] have shown that short standardized genomic region of the mitochondrial gene Cytochrome c oxidase subunit 1 (COI) can serve as a uniform target gene for bio-identification system giving rise to the DNA barcode concept. The DNA Barcode of Life Data System (BOLD, http://www.boldsystems.org) has been developed since 2004 and was officially established in 2007 [8]. Recently, many studies have shown that sequence diversity in a ~ 650 bp region near the 5' area of the COI gene provides strong species level resolution for various animal taxa, including birds [9, 10], fishes [11-14], springtails [15], spiders [16], oysters [17], mosquitoes [18], shrimps [19] etc. DNA barcoding is an effective tool to study marine biodiversity [20-25].

The Indian Sundarbans, spread over around 9630 sq. km is the single largest block of tidal halophytic mangrove forest listed in the UNESCO world heritage list (htpp://whc.unesco.org/en/list). This region being nutrient rich, attracts large number and varieties of species and is regarded as one of the largest natural nurseries of the planet. This dynamic and fragile ecosystem is facing anthropogenic stress leading to loss of biodiversity [26-27]. In this study, DNA barcoding has been done in two edible oysters belonging to the genus *Crassostrea* collected from Sunderbans.

Subsequently, phylogenetic analysis using other sequences deposited as barcode sequence of *Crassostrea* was done to reveal the molecular phylogenies of oysters belonging to the genus *Crassostrea* through DNA barcoding.

2. Materials and Methods

2.1. Sample collection and extraction of DNA

Sagar Island of Sundarbans was selected for this study and Oyster samples were collected during the period of June 2008 to July 2009. From each Oyster sample a small amount of muscle tissue was dissected out using sterile scissors and forceps. About 2 g wet tissue was washed in TES buffer containing 50 mM Tris HCl (pH 8.0), 25 mM EDTA (pH 8.0), 150 mM NaCl. The sample was then homogenized in TES buffer and genomic DNA was extracted using Proteinase K and Phenol-chloroform method [28]. The extracted DNA was checked by 1% agarose gel electrophoresis.

2.2. PCR amplification of COI region

PCR was performed using the Forward Primer 5'-GGTCAACAAATCATAAAGATATTGG-3' and the Reverse Primer 5'-TAAACTTCAGGGTGACCAAAAAATCA-3' $^{[29]}$. The PCR mixture contained 10 ng genomic DNA, 2 X Superhot Master mix (Bioline), 50 pmole each primer in a reaction volume of 40 μ l. The PCR conditions were as follows: 94 °C for 3 min, 40 cycles at 94 °C for 1 min, 45 °C for 2 min, 72 °C for 3 min, and a final extension at 72 °C for 10 min. The PCR product was checked by 1.5 % agarose gel electrophoresis.

2.3. Purification of PCR product and DNA sequencing

The PCR product was run on 0.8% Agarose gel and the PCR product of expected size was extracted using QIA quick PCR Purification Kit (QIAGEN, USA, Cat.No.28704) according to manufacturer's instructions. The purified PCR product was sequenced both side using Automated DNA Sequencer (ABI 7300).

2.4. Submission of sequence to NCBI

The Open Reading Frame (ORF) was checked for correct amino acid sequences followed by submission of sequences to the NCBI database.

2.5 Bioinformatics analysis of the sequences

Alignments were done using Clustal W, with manual editing whenever it was necessary. Pair wise nucleotide sequence divergences were calculated using the Kimura-2-parameter (K2P) model [30], and the Neighbour-Joining (NJ) analysis [31] in the MEGA 4.1 [32] to examine relationship among taxa. Branch support was assembled by bootstrapping with 500 replicates.

3. Results

The accession numbers FJ262985 (627bp) and FJ262983 (675bp) from GenBank were received for the novel sequences of *Crassostrea gryphoides* and *Crassostrea cuttackensis*, respectively. The accession numbers of different *Crassostrea sps.* from the GenBank sequences previously deposited by several authors and included in the phylogenetic analysis is shown in Table-1.

Table 1: List of Crassostrea species, Accession No. with references and number of sequences per species used in this study.

Species	Accession No	References	No of sequences
Crassostrea gigas	DQ417690,	Lapegue et al.,(2004) [42]	24
	DQ417691, DQ417692,	Boudry et al., (2003) [36]	
	DQ417693,	Cardoso et al.,(2007) [43]	
	DQ417694,	Wang et al.,(2004) [44]	
	DQ417695, DQ417696,		
	DQ659367,		
	DQ659368,		
	DQ659369,		
	DQ659370,		
	DQ659372,		
	DQ659373,		
	DQ659374,		
	AJ553907, AJ553908,		
	AJ553909,		
	AJ553910,		
	AJ553911,		
	AY397685,		
	AY397686,		
	AY455664, NC001276		
Crassostrea hongkongensis	AY632556, AY632557, AY632558	Wang et al., (2004) [44]	3
Crassostrea ariakensis	AY160752, AY160753, AY160754, Lee et al., (2000) [45]		5
	AF152569, AF300617	Lam and Morton (2003) [32]	
Crassostrea belchari	AY038077, AY160755	Klinbunga et al., (2003) [46]	2
	·	Lam and Morton (2003) [32]	
Crassostrea iredalei	EU007464,	Reece et al., (2008) [40]	4
	EU007465,	Klinbunga <i>et al.</i> , (2003) [46]	
	EU816045,		
	AY038078		
Crassostrea nippona	AF300616	Lee et al., (2000) [47]	1
Crassostrea virginica	NC_007175		3
J	EU007484,	Reece et al., (2008), [40]	
	EU007485	Milbury and Gaffney (2005) [47]	

Due to length variations in GenBank sequences, 516 aligned nucleotide positions were used in the phylogenetic analysis. The sequence divergence (K2P) among the nine species of *Crassostrea* reveals that the maximum divergence (1.35) is between *C. gryphoides* and *C. ariakensis* (Table-2). The sequence divergence of *C. belcheri* with *C. gigas*, *C. hongkongensis*, *C. ariakensis*, *C. nippona* and *C. iredalei* is low (ranging between 0.18 - 0.19) whereas it's sequence divergence with *C. gryphoides* and *C. cuttakensis* is 1.28 and 1.27 respectively. The mean divergence of the two novel

sequences of C. gryphoides and C. cuttakensis are greater than one where as the mean sequence divergence of the other seven species of Crassostrea are very low (0.13-0.27). This result complies with the Neighbour-Joining (NJ) analysis where C. gryphoides and C. cuttakensis appear as a closely related separate group from the other seven species. The Neighbour-Joining (NJ) analysis of Kimura 2-parameter (K2P) distances of COI sequences of different oysters, including our sequences as well as sequences obtained from GenBank are shown in Figure-1.

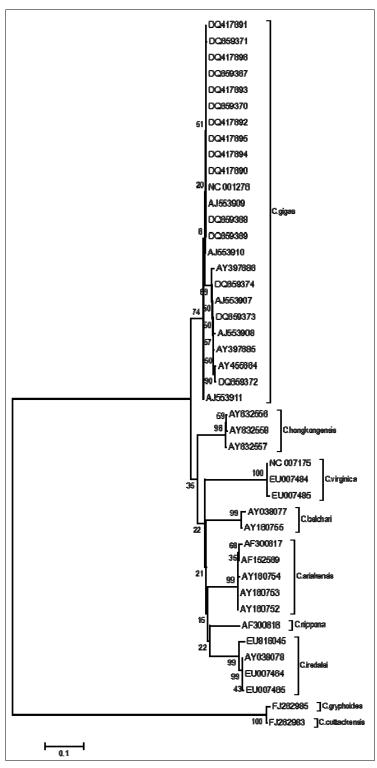


Fig 1: Neighbour-joining analysis of kimura2-parameter (K2P) distances of CO1 Crassostrea sequences from Sundarbans and from GenBank.

Table 2: Mean divergence (K2P) within (bold number on diagonal) and among (below diagonal) the *Crassostrea* species (n/c indicates non comparable due to one accession number.)

Species	1	2	3	4	5	6	7	8	9
1. C. virginica	0.00								
2. C. belcheri	0.26	0.01							
3. C. ariakensis	0.27	0.18	0.01						
4. C. hongkongensis	0.27	0.19	0.15	0.00					
5. C. nippona	0.26	0.19	0.15	0.13	n/c				
6. C. gigas	0.25	0.18	0.17	0.14	0.17	0.01			
7. C. iredalei	0.26	0.18	0.18	0.18	0.16	0.18	0.01		
8. C. gryphoides	1.27	1.28	1.35	1.23	1.32	1.17	1.26	n/c	
9. C. cuttackensis	1.25	1.27	1.33	1.21	1.3	1.16	1.24	0	n/c

4. Discussion

In this study 44 barcode sequences belonging to 9 species of the genus Crassostrea were analyzed. The different species are C. gigas, C. hongkongensis, C. virginica, C. belcheri, C. ariakensis, C. nippona, C. iredalei, C. gryphoides and C. cuttakensis. The different species formed distinctive clusters. It is evident that all the 24 specimens of C. gigas with different accession numbers were in the same cluster. Similarly, all 5 specimens of C. ariakensis were clustered together. It is also evident that C. nippona and C. iredalei are closely related. Furthermore, C. gryphoides and C. cuttakenses are very much related with only one substitution of C in place of T. Larger sample sizes are required to increase the power of the test, but the limited number of barcode sequences in the database is a limitation and further analysis using larger sample sizes in different geographic location is necessary to make the results more acceptable. The worldwide barcoding effort would increase the barcode database which would refine the results and overcome the shortcomings of using smaller sample sizes. Recently, several researchers have tried to resolve the questions surrounding oyster identification and taxonomic relationships by DNA (RAPD) analysis [33], and DNA sequences of several nuclear and mitochondrial genes [34-37] including repetitive satellite DNA sequences [38], mt DNA [39] which have broadened our understanding of oyster identification procedures. Bio-security is emerging as one of the most important challenge for the international community. Invasive alien species (IAS) can pose serious threat to the stability of ecosystem. They can also affect producer livelihood and consumer confidence. Of those species introduced to new environments about one percent is predicted to become invasive that can have serious economic implications. Pertaining to the rapid growth of oyster aquaculture and the pressing demand of the consumers to purchase the specific species, it is essential to determine the species at an early stage so that the desired species can be cultured. Identification of juveniles and immature stages of marine oysters is very difficult using traditional taxonomic approach and molecular phylogenies help resolve taxonomic confusion with Crassostrea oyster species [40]. With the help of a pinch of tissue it is easily possible to link the adult and larval forms through DNA barcoding. DNA barcodes can be used as cost effective tool for species identification. Armstrong and Ball [41] rightly proposed that the adoption of this method would enable the global IAS community to better cope with changing and localized species priorities. This molecular identification technique can open a new chapter in modern taxonomy.

5. Acknowledgements

The authors would like to acknowledge the support for this work, from the Deanship of Scientific Research (DSR), University of Tabuk, Tabuk, Saudi Arabia, under the no. S-1435-0112.

6. References

- 1. Tack JF, Berghe E, Polk PH. Ecomorphology of *Crassostrea cucullata* (Born, 1778) (Ostreidae) in a mangrove creek (Gazi, Kenya). Hydrobiologia 1992; 247:109-117.
- Woese CR. Phylogenetic Trees: whither microbiology? Curr Biol 1996; 6(9):1060-1063.
- Zhou J, Davey ME, Figueras JB, Rivkina E, Gilichinski D, Teidje JM. Phylogenetic diversity of a bacterial community determined from Siberian tundra soil. Microbiology 1997; 143(12):3913-3919.
- Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Nation Acad Sci, USA 1996; 95(6):3140-3145.
- 5. Sugita T, Nishikawa A, Shinoda T. Identification of *Trichosporon asahii* by PCR based on sequences of the internal transcribed spacer regions. J ClinMicrobio1998; 36(9):2742-2744.
- 6. Hebert PD, Cywinska A, Ball SL, deWard JR. Biological identifications through DNA barcodes. Proc Biol Sci 2003a; 270(1512):313-321.
- 7. Hebert PDN, Ratnashingham S, deWard JR. Barcoding animal life: cytochrome oxidase subunit 1 divergences among closely related species. Proc Res Soc Lond Bio 2003b; 270:96-99.
- 8. Ratnasingham S, Hebert PDN. BOLD: The Barcode of Life Data System. Mol Ecol Notes 2007; 7:355-364.
- 9. Yoo HS, Eah JY, Kim JS, Kim YJ, Min MS, Paek WH *et al.* DNA barcoding Korean birds. Mol Cells 2006; 22(3):323-327.
- 10. Tavares ES, Baker AJ. Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol Biol 2008; 9(8):81-85.
- 11. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD. DNA barcoding Australia's fish species. Philos Trans R Soc Lond B Biol Sci 2005; 360(1462):1847-1857.
- 12. Yancy HF, Zemlak TS, Mason JA, Washington JD, Tenge BJ, Nguyen NJ *et al.* Potential use of DNA barcodes in regulatory science: applications of Regulatory Fish Encyclopedia. J Food Prot 2008; 71(1):210-217
- 13. Laskar BA, Bhattacharjee MJ, Dhar B, Mahadani P, Kundu S, Ghosh SK. The species dilemma of Northeast

- Indian Mahseer (Actinopterygii: Cyprinidae): DNA Barcoding in Clarifying the Riddle. PLoSONE 2013; 8(1):e53704.
- 14. Trivedi S, Affan R, Alessa AHA, Ansari AA, Dhar B, Mahadani P *et al.* DNA Barcoding of Red Sea Fishes from Saudi Arabia The first approach. DNA Barcodes 2014a; 2:17-20.
- Hogg ID, Hebert PDN. Biological identification of speingtails (Collenbola: Hexapoda) from Canadian arctic, using mitochondrial DNA barcodes. Can J Zool 2004; 82:1-6.
- 16. Greenstone MH, Rowley DH, Heimbach U, Lundgren JG, Pfannenstiel RS, Rehner SA. Barcoding generalist predators by polymerase chain reaction: carabids and spiders. Mol Ecol 2005; 14(10):3247-66.
- 17. Trivedi S, Ghosh SK, Choudhury A. DNA sequence of *Cytochrome c oxidase* Subunit 1 (COI) region of an oyster, *Saccostrea cucullata* collected from Sunderbans. J Environ Sociobio 2013a; 10(1):77–81.
- 18. Cywinska A, Hunter FF, Hebert PDN. Identifying Canadian mosquito species through DNA barcodes. Med Veter Entom 2006; 20:4213-424.
- 19. Trivedi S, Ghosh SK, Choudhury A. *Cytochrome c oxidase* Subunit 1 (COI) Sequence of *Macrobrachium rosenbergii* collected from Sunderbans, India J Environ Sociobio 2011; 8(2):169–172.
- Bucklin A, Stienke D, Blanco-Bercial L. DNA barcoding of marine metazoa. Ann Rev Mar Sci 2011; 3:471-508.
- Ghosh SK, Ghosh PR, Trivedi S, Das PJ, Chetry AJ, Mahadani P *et al*. Mitochondrial Genome: The Biomarker for Indian Biodiversity. 3rd International Barcode of Life Conference. Mexico City, 2009.
- 22. Smriti S, Shrivastava A, Tarafdar A, Trivedi S. DNA barcoding of some economic and endangered species from Sunderbans, India. National Conference on Glimpses of Medical, Molecular and Marine Biotechnology, Institute of Technology and Marine Engineering, West Bengal, India, 2010.
- 23. Radulovici AE, Archambault P, Dufresne F. DNA Barcodes for marine biodiversity: Moving fast forward? Diversity 2010; 2(4):450-472.
- 24. Trivedi S, Affan R, Alessa AHA, Dhar B, Mahadani P, Ghosh SK. DNA barcoding of fishes collected from Red Sea coastal waters of Tabuk, Saudi Arabia. 5th International Barcode of Life Conference, Kunming, China, 2013.
- 25. Trivedi S, Aloufi A, Ansari AA, Mitra A, Ghosh SK. DNA Barcoding in Marine Perspective. Aqaba International Conference on Marine and Coastal Environment, Status and Challenges in Arab World. Aqaba, Jordan, 2014.
- 26. Trivedi S, Mitra A, Choudhuri A, Gupta A, Singh B, Chaudhury A. A case study on the loss of biodiversity during prawn seed collection from the Hooghly estuary, India. National convention on environment of India-challenges for the 21st Century. T-V/ 16-24. Institution of Public Health Engineers, Calcutta, India.
- 27. Trivedi S, Banerjee K, Mukhopadhyay N, Mitra A. Threat associated with shrimp culture practice in the ichthyoplankton community of coastal West Bengal. International conference on Biodiversity: issues and concerns, Indian Statistical Institute, Kolkata, India, 2007.
- 28. Ghosh SK. PCR based DNA fingerprinting for improvement of farm animals: Manual, Published by Dept

- of Biotechnology, Govt of India, 2008.
- 29. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 1994; 3:294-299.
- 30. Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press, 2000.
- 31. Saitou N, Nei M. The neighbour-joining method: a new method of reconstructing phylogenetic trees. Mol Bio Evol, 1987; 4:406-425.
- 32. Kumar S, Nei M, Dudley J, Tamura K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 2008; 9(4):299-306.
- 33. Klinbunga S, Ampayup P, Tassanakajon A, Jarayabhand P, Yoosukh W. Genetic diversity and molecular markers of cupped oysters (genera *Crassostrea*, *Saccostrea* and *Striostrea*) in Thailand revealed by randomly amplified polymorphic DNA analysis. Mar Biotech 2001; 3:133-144.
- 34. Littlewood DTJ. Molecular phylogenetics of cupped oysters based on partial 28S rRNAgene sequences. Mol Phylogenet Evol 1994; 3:211-229
- 35. Yu Z, Kong X, Zhang I, Guo X, Xiang J. Taxonomic status of four *Crassostrea* oysters from China as inferred from mitochondrial DNA sequences. J Shellfish Res 2003; 22:31-38.
- 36. Boudry P, Heurtebise S, Lapegue S. Mitochondrial and nuclear DNA sequence variation of presumed *Crassostrea gigas* and *Crassostrea angulata* specimens: a new oyster species in Hong Kong? Aquaculture 2003; 228:15-25.
- 37. Kimberly S, Reece KS, Cordes JF, Stubbs JB, Hudson KL, Francis EA. Molecular phylogenies help resolve taxonomic confusion with Asian *Crassostrea* oyster species. Mar Biol 2008; 153:709-721.
- 38. Lopez-Flores I, de la Herran R, Garrido-Ramos MA, Boudry P, Ruiz-Rejon C, Ruiz-Rejon M. The molecular phylogeny of oysters based on satellite DNA related to transposons Gene 2004; 399:181-188.
- 39. Lam K, Morton B. Mitochondrial DNA and morphological identification of a new species of *Crassostrea* (Bivalvia: Ostreidae) cultured for centuries in the Pearl River Delta, 2003.
- 40. Reece KS, Cordes JF, Stubbs JB, Hudson KL, Francis EA. Molecular phylogenies help resolve taxonomic confusion with Asian *Crassostrea* oyster species. Mar Biol 2008; 153(4):709-721.
- 41. Armstrong KF, Ball SL. DNA barcodes for biosecurity: invasive species identification. Phil Trans R Soc B 2005; 360:1813-1823.
- 42. Lapegue S, Batista F, Heurtebise S, Yu Z, Boudry P. Evidence for the presence of the Portuguese oyster, *Crassostrea angulata*, in northern China J Shellfish Res 2004; 23(3):759-763.
- 43. Cardoso JF, Langlet D, Loff J, Martins A, Witte J, Santos PT, Van der Veer HW. Spatial variability in growth and reproduction of the Pacific oyster *Crassostrea gigas* (Thunberg, 1793) along the west. European coast J Sea Res 57:303-315.
- 44. Wang H, GuoX, Zhang G, Zhang F. Classification of jinjiang oysters *Crassostrea rivularis* (Gould, 1861) from China, based on morphology and phylogenetic analysis. Aquaculture 242(1-4):137-155.

- 45. Lee SY, Park DW, An HS, Kim SH. Phylogenetic relationship among four species of Korean oysters based on mitochondrial 16S rDNA and CO1 gene. Korean J Biol Sci 2000; 16(2):203-211.
- 46. Klinbunga S, Khamnamtong N, Tassanakajon A, Puanglarp N, Jarayabhand P, Yoosukh W. Molecular Genetic Identification Tools for Three Commercially Cultured Oysters (*Crassostrea belcheri, Crassostrea iredalei*, and *Saccostrea cucullata*) in Thailand Mar Biotechnol 2003; 5(1):27-36.
- 47. Milbury CA, Gaffney PM. Complete mitochondrial DNA sequence of the eastern oyster *Crassostrea virginica* Mar Biotech 2005; 7(6):697-712.